Contents

Topic 1

Overview .. 1

Deployment options ... 2

 - SSL inspection .. 2
 - As a Web proxy cache 3
 - In a cache hierarchy ... 4
 - In a managed cluster .. 4
 - As a DNS proxy cache 4

Components .. 4

 - Cache ... 4
 - RAM cache ... 5
 - Adaptive Redirection Module 5
 - Host database ... 5
 - DNS resolver .. 6

Processes .. 6

Administration tools ... 7

Proxy traffic analysis features 7

Online Help .. 8

Technical Support ... 8

Topic 2

Getting Started ... 11

Accessing the Content Gateway manager 11

 - Configuring Content Gateway for two-factor authentication ... 13
 - Accessing the Content Gateway manager if you forget the master administrator password .. 15

Entering your subscription key 16

Providing system information 17

Verifying that the proxy is processing Internet requests 18

Using the command-line interface 18

Starting and stopping Content Gateway on the Command Line . 19

 - The no_cop file .. 20

Topic 3

Web Proxy Caching .. 21

Cache requests .. 21

Ensuring cached object freshness 22

 - HTTP object freshness .. 22
 - FTP object freshness ... 26

Scheduling updates to local cache content 27

 - Configuring the Scheduled Update option 28
 - Forcing an immediate update 28

Pinning content in the cache 29
Setting cache pinning rules .. 29
Enabling cache pinning ... 30
To cache or not to cache? ... 30
Caching HTTP objects ... 30
 Client directives .. 31
 Origin server directives .. 32
 Configuration directives 34
Forcing object caching .. 36
Caching HTTP alternates .. 36
 Configuring how Content Gateway caches alternates .. 36
 Limiting the number of alternates for an object 37
Caching FTP objects ... 37
 Disabling FTP over HTTP caching 38

Topic 4 Explicit Proxy .. 39
Manual browser configuration 39
Using a PAC file ... 40
 Sample PAC file ... 41
Using WPAD .. 42
Configuring FTP clients in an explicit proxy environment . 43

Topic 5 Transparent Proxy and ARM 47
The ARM .. 48
Transparent interception strategies 49
 Transparent interception with a Layer 4 switch 49
 Transparent interception with WCCP v2 devices 50
 Transparent interception and multicast mode 66
 Transparent interception with policy-based routing ... 67
 Transparent interception with software-based routing . 68
Configuring Content Gateway to serve only transparent requests 69
 Interception bypass .. 70
 Dynamic bypass rules .. 71
 Static bypass rules .. 72
 Viewing the current set of bypass rules 73
Connection load shedding .. 73
Reducing DNS lookups .. 74

Topic 6 Additional Proxy Configuration 77
IP spoofing .. 77
 Range-based IP spoofing 78
 IP spoofing and the flow of traffic 79
 Configuring IP spoofing 80
Support for IPv6 ... 82
<table>
<thead>
<tr>
<th>Topic 7</th>
<th>Clusters</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Management clustering</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Changing clustering configuration</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Adding nodes to a cluster</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Deleting nodes from a cluster</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Virtual IP failover</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>What are virtual IP addresses?</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Enabling and disabling virtual IP addressing</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Adding and editing virtual IP addresses</td>
<td>92</td>
</tr>
<tr>
<td>Topic 8</td>
<td>Hierarchical Caching</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>HTTP cache hierarchies</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Parent failover</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>Configuring Content Gateway to use an HTTP parent cache</td>
<td>96</td>
</tr>
<tr>
<td>Topic 9</td>
<td>Configuring the Cache</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>Changing cache capacity</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Querying cache size</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Increasing cache capacity</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Reducing cache capacity</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Partitioning the cache</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Making changes to partition sizes and protocols</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Partitioning the cache according to origin server or domain</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Configuring cache object size limit</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Clearing the cache</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Changing the size of the RAM cache</td>
<td>104</td>
</tr>
<tr>
<td>Topic 10</td>
<td>DNS Proxy Caching</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Configuring DNS proxy caching</td>
<td>108</td>
</tr>
<tr>
<td>Topic 11</td>
<td>Configuring the System</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Content Gateway manager</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Using Configure mode</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>Command-line interface</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>Configuration files</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Saving and restoring configurations</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Taking configuration snapshots</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Restoring configuration snapshots</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Deleting configuration snapshots</td>
<td>116</td>
</tr>
<tr>
<td>Topic 12</td>
<td>Monitoring Traffic</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Viewing statistics</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Using Monitor mode</td>
<td>117</td>
</tr>
</tbody>
</table>
Contents

Viewing statistics from the command line 121
Working with alarms 121
Clearing alarms 122
Configuring Content Gateway to email alarm messages ... 122
Using a script file for alarms 123
Using Performance graphs 123
Creating SSL-related reports 124
Certificate Authorities 124
Incidents ... 126

Topic 13

Working With Web DLP 129
TRITON AP-WEB with the Web DLP module 129
How Web DLP works 130
TRITON AP-DATA components on-box with Content Gateway . 130
TRITON AP-DATA over ICAP 131
Registering and configuring TRITON AP-DATA 131
Registration and configuration details 132
Configuration options 134
Unregistering on-box Data Security 135
Stopping and starting Data Security processes 135
Configuring the ICAP client 136
ICAP failover and load balancing 137

Topic 14

Working With Encrypted Data 141
Running in explicit proxy mode 143
Enabling SSL support 145
Initial SSL configuration tasks 146
Certificates .. 147
Internal Root CA 147
Importing your Root CA 148
Creating a new Root CA 149
Creating a subordinate CA 150
Backing up your internal Root CA 155
Managing certificates 156
View a certificate 156
Delete a certificate 156
Change the allow/deny status of a certificate 157
Adding new certificate authorities 157
Backing up certificates 158
Restoring certificates 158
Decryption and Encryption 158
SSL configuration settings for inbound traffic 158
Contents

Backup domain controllers ... 193
Transparent user authentication ... 193
Browser limitations ... 194
Global authentication options ... 194
Surrogate credentials ... 198
Integrated Windows Authentication 199
Legacy NTLM authentication .. 204
LDAP authentication ... 207
RADIUS authentication ... 210
Rule-Based Authentication .. 213
Mac and iPhone/iPad authentication 236

Topic 16

Working With Log Files .. 243

Event log files ... 244
Managing event log files .. 245
Choosing the logging directory .. 245
Controlling logging space ... 245
Event log file formats ... 247
Using standard formats ... 247
Custom format ... 248
Choosing binary or ASCII .. 251
Using logcat to convert binary logs to ASCII 252
Rolling event log files ... 253
Rolled log filename format .. 254
Rolling intervals ... 255
Setting log file rolling options ... 255
Splitting event log files ... 256
HTTP host log splitting .. 256
Setting log splitting options .. 257
Collating event log files .. 258
Configuring Content Gateway to be a collation server 259
Configuring Content Gateway to be a collation client 260
Using a stand-alone collator .. 260
Viewing logging statistics .. 261
Viewing log files .. 262
Example event log file entries .. 263
Squid format ... 263
Netscape examples .. 264
Cache result codes in Squid- and Netscape-format log files 266

Appendix A

Statistics ... 269
My Proxy ... 269
Summary ... 270
Contents

Node .. 271
Graphs ... 272
Alarms .. 272
Diagnostics ... 273
Protocols ... 275
HTTP ... 275
FTP .. 277
Security .. 277
Integrated Windows Authentication 278
LDAP .. 280
Legacy NTLM .. 280
SOCKS ... 281
Web DLP ... 281
Subsystems ... 282
Cache .. 282
Clustering ... 284
Logging ... 284
Networking ... 284
System ... 285
ARM .. 285
ICAP .. 286
WCCP ... 287
DNS Proxy ... 288
DNS Resolver ... 288
Virtual IP .. 289
Client Connection Status 289
Performance .. 289
SSL ... 292
SSL Key Data .. 292
CRL Statistics ... 293
Reports ... 293

Appendix B

Commands and Variables .. 295
Websense Content Gateway commands 295
Websense Content Gateway variables 297
Statistics ... 297

Appendix C

Configuration Options .. 301
My Proxy .. 301
Basic ... 302
Subscription ... 306
UI Setup .. 307
Snapshots ... 311
Contents

Logs ... 313

Protocols ... 314

HTTP .. 314
HTTP Responses ... 324
HTTP Scheduled Update 325
HTTPS .. 327
FTP ... 328

Content Routing ... 329

Hierarchies .. 330

Mapping and Redirection 332

Browser Auto-Config .. 334

Security .. 334

Connection Control 335
FIPS Security ... 335

Web DLP .. 336

Access Control ... 337

SOCKS ... 353

Subsystems ... 356

Cache .. 356

Logging .. 358

Networking .. 362

Connection Management 362

ARM ... 364

WCCP ... 370

DNS Proxy .. 374

DNS Resolver .. 375

ICAP ... 378

Virtual IP .. 379

Health Check URLs ... 380

SSL ... 382

Appendix D

Event Logging Formats 383

Custom logging fields 383

Logging format cross-reference 386

Squid logging formats 387

Netscape Common logging formats 387

Netscape Extended logging formats 388

Netscape Extended-2 logging formats 388

Appendix E

Configuration Files ... 391

Specifying URL regular expressions (url_regex) 392

Examples .. 393

auth_domains.config ... 393
Format . 393
auth_rules.config . 395
Format . 396
bypass.config . 397
Format . 398
Dynamic deny bypass rules. 398
Examples . 399
cache.config . 399
Format . 400
Examples . 401
filter.config . 402
Format . 403
Examples . 404
hosting.config . 405
Format . 406
Examples . 406
ip_allow.config . 407
Format . 407
Examples . 407
ipnat.conf . 408
Format . 408
Examples . 408
log_hosts.config . 408
Format . 409
Examples . 409
logs_xml.config . 410
Format . 410
Examples . 415
WELF (WebTrends Enhanced Log Format) . 417
mgmt_allow.config . 417
Format . 417
Examples . 418
parent.config . 418
Format . 419
Examples . 420
partition.config . 421
Format . 421
Examples . 422
records.config . 422
Format . 422
Examples . 422
Contents

Configuration variables .. 423
System variables .. 424
Local manager .. 427
Process manager .. 429
Virtual IP manager .. 429
Alarm configuration ... 430
ARM ... 430
Load shedding configuration (ARM) 434
Authentication basic realm ... 435
LDAP .. 435
RADIUS authentication ... 438
NTLM ... 439
Integrated Windows Authentication 442
Transparent authentication .. 443
HTTP engine ... 444
Parent proxy configuration ... 447
HTTP connection timeouts (secs) 448
Origin server connection attempts 449
Negative response caching .. 451
Proxy users variables .. 451
Security ... 453
Cache control ... 453
Heuristic expiration .. 455
Dynamic content and content negotiation 456
Anonymous FTP password ... 456
Cached FTP document lifetime ... 457
FTP transfer mode .. 457
Customizable user response pages 458
FTP engine ... 459
SOCKS processor .. 464
Net subsystem ... 464
Cluster subsystem .. 465
Cache ... 465
DNS .. 466
DNS proxy ... 467
HostDB .. 468
Logging configuration ... 469
URL remap rules .. 473
Scheduled update configuration 474
SNMP configuration .. 475
Plug-in configuration .. 475
WCCP configuration ... 475
FIPS (Security Configuration) ... 476
Contents

SSL Decryption .. 476
ICAP ... 482
Web DLP .. 483
Connectivity, analysis, and boundary conditions 484
remap.config ... 487
 Format ... 488
 Examples ... 488
socks.config ... 489
 Format ... 489
 Examples ... 490
socks_server.config .. 491
 Format ... 491
 Examples: ... 491
splitdns.config .. 492
 Format ... 492
 Examples ... 493
storage.config .. 494
 Format ... 494
update.config .. 494
 Format ... 495
 Examples ... 496
wccp.config ... 496

Appendix F

Error Messages .. 499
Websense Content Gateway error messages 499
 Process fatal errors ... 499
 Warnings ... 500
Alarm messages .. 502
HTML messages sent to clients 504
Standard HTTP response messages 508
Websense® Content Gateway is the Web proxy component of TRITON® AP-WEB.

The Content Gateway component of TRITON AP-WEB performs advanced content analysis precisely when it is needed—as the content flows through the proxy. The results of analysis are used by TRITON AP-WEB to protect you from malicious content and apply the Acceptable Use Policy (AUP) that you have configured in TRITON AP-WEB. This on-demand analysis protects users and networks at the same time that it makes rapidly changing websites safe for your organization and users. Depending on Content Gateway configuration, advanced analysis is applied to HTTP, HTTPS, and FTP channels.

The precise application of advanced analysis is configured by the administrator for each TRITON AP-WEB deployment.

Content Gateway can also be configured to function as a high-performance web proxy cache that caches frequently accessed information at the edge of the network. This brings content physically closer to end users for faster delivery and reduced bandwidth usage.

Content Gateway can also be deployed as the Web proxy component of TRITON AP-DATA (absent TRITON AP-WEB). A core version of Content Gateway is included in TRITON AP-DATA Gateway licenses. Known as AP-DATA Web Content Gateway, this core version is managed through Content Gateway and TRITON AP-DATA managers, and allows Content Gateway to block traffic that matches the TRITON AP-DATA web policies. Note that some features of Content Gateway are available only when Content Gateway is deployed with TRITON AP-WEB, and not when it’s a stand-alone deployment with TRITON AP-DATA Web Content Gateway. Those features are marked accordingly.

Content Gateway can be deployed:

- **SSL inspection**
- **As a Web proxy cache**
- **In a cache hierarchy**
- **In a managed cluster**
- **As a DNS proxy cache**

Content Gateway can also be configured to:
 Ensure that clients are authenticated before they access content. Content Gateway supports Integrated Windows Authentication, legacy NTLM (NTLMSSP), LDAP, and RADIUS. See, *Content Gateway user authentication*, page 191.

 Control client access to the proxy. See, *Controlling client access to the proxy*, page 177.

 Use different DNS servers, depending on whether the proxy needs to resolve host names located inside or outside a firewall. This enables you to keep your internal network configuration secure while providing transparent access to external sites on the Internet. See, *Using the Split DNS option*, page 190.

 Use the co-located Data policy engine or the ICAP interface to enable sites using TRITON AP-DATA to examine outbound material such as Web postings, and block or allow based on company policy. See *Working With Web DLP*, page 129.

 Control access to the Content Gateway manager using:
  SSL (Secure Sockets Layer) protection for encrypted, authenticated access
  User accounts that define which users can access the manager and which activities they can perform (for example, view statistics only or view statistics and configure Content Gateway).

 Integrate into your firewall and control traffic through a SOCKS server.
 See *Security*, page 177.

Related topics:

* Deployment options, page 2
* Components, page 4
* Proxy traffic analysis features, page 7
* Online Help, page 8
* Technical Support, page 8

Deployment options

SSL inspection

When the HTTPS option is enabled, HTTPS traffic is decrypted, inspected, and re-encrypted as it travels to and from the client and origin server.
Content Gateway includes a complete set of certificate-handling capabilities. See *Working With Encrypted Data*, page 141

Note

Content Gateway does not cache HTTPS content.

Important

Even when HTTPS is **not** enabled, Content Gateway performs HTTPS URL filtering. This means that for every HTTPS request, a URL lookup is performed and policy is applied.

In explicit proxy mode, when HTTPS is disabled, Content Gateway performs URL filtering based on the hostname in the request. If the site is blocked, Content Gateway serves a block page. Note that some browsers do not support display of the block page. To disable this feature, configure clients to not send HTTPS requests to the proxy.

In transparent proxy mode, when HTTPS is disabled, if there is an SNI in the request, Content Gateway gets the hostname from the SNI and performs URL filtering based on the hostname. Otherwise, Content Gateway uses the Common Name in the certificate of the destination server. However, if the Common Name contains a wildcard (*), the lookup is performed on the destination IP address. If the site is blocked, the connection with the client is dropped; no block page is served. To disable this feature when used with WCCP, do not create a service group for HTTPS.

As a Web proxy cache

When Content Gateway is deployed as a Web proxy cache, user requests for Web content pass through Content Gateway on their way to the destination Web server (origin server). If the Content Gateway cache contains the requested content, Content Gateway serves the content directly. If the Content Gateway cache does not have the requested content, Content Gateway acts as a proxy, fetching the content from the origin server on the user’s behalf, while keeping a copy to satisfy future requests.

Content Gateway is typically deployed to receive client requests in one of the 2 following ways:

- As an **explicit proxy** in which the user’s browser or client software is configured to send requests directly to Content Gateway. See *Explicit Proxy*, page 39.
- As a **transparent proxy** in which user requests are transparently routed to Content Gateway on their way to the destination server. The user’s client software
Overview

Websense Content Gateway (typically a browser) is unaware that it is communicating with a proxy. See *Transparent Proxy and ARM*, page 47.

In a cache hierarchy

Websense Content Gateway can participate in flexible cache hierarchies, where Internet requests not fulfilled in one cache can be routed to other regional caches, taking advantage of their contents and proximity. In a hierarchy of proxy servers, Content Gateway can act either as a parent or child, either to other Content Gateway servers or to other caching products. See *Hierarchical Caching*, page 95.

In a managed cluster

Websense Content Gateway scales from a single node to multiple nodes, with a maximum recommended limit of 16. This forms a managed cluster that improves system capacity, performance, and reliability.

- A managed cluster detects the addition and removal of nodes.
- Cluster nodes automatically share configuration information, allowing members of the cluster to be administered at the same time.

If the virtual IP failover option is enabled, Content Gateway maintains a pool of virtual IP addresses that it assigns to the nodes of the cluster. Content Gateway can detect node failures (such as power supply or CPU failures) and reassign IP addresses of the failed node to the operational nodes. See *Virtual IP failover*, page 91, for details.

If Content Gateway is configured as a transparent proxy with WCCP, failover is handled by WCCP and virtual IP failover should not be used. See *WCCP load distribution*, page 53.

For complete information, see *Clusters*, page 85.

As a DNS proxy cache

As a DNS proxy cache, Content Gateway can resolve DNS requests for clients. This offloads remote DNS servers and reduces response times for DNS lookups. See *DNS Proxy Caching*, page 107.

Components

The *cache* consists of a high-speed object database called the object store. The object store indexes objects according to URLs and associated headers. The object store can
cache alternate versions of the same object, varying on spoken language or encoding type, and can store small and large documents, minimizing wasted space. When the cache is full, the proxy removes stale data, ensuring that frequently requested objects are fresh.

Content Gateway tolerates disk failure on any cache disk. If the disk fails completely, Content Gateway marks the disk as corrupt and continues using the remaining disks. If all cache disks fail, Content Gateway goes into proxy-only mode.

You can partition the cache to reserve disk space for storing data for specific protocols and origin servers. See Configuring the Cache, page 99.

RAM cache

Content Gateway maintains a small RAM memory cache of extremely popular objects. This RAM cache serves the most popular objects quickly and reduces load on disks, especially during traffic peaks. You can configure the RAM cache size. See Changing the size of the RAM cache, page 104.

Adaptive Redirection Module

The Adaptive Redirection Module (ARM) provides several essential functions. One is to send device notifications for cluster communication interface failover. Another is to inspect incoming packets before the IP layer sees them and readdress them to Content Gateway for processing.

The ARM is always active.

To redirect user requests to the proxy, the ARM changes an incoming packet’s address. The packet’s destination IP address is changed to the IP address of the proxy, and the packet’s destination port is changed according to the protocol used. For example, for HTTP, the packet’s destination port is changed to the proxy’s HTTP port (usually 8080).

The ARM supports automatic bypass of sites that do not transit properly through a proxy.

The ARM also prevents client request overloads. When there are more client connections than the specified limit, the ARM forwards incoming requests directly to the origin server. See Connection load shedding, page 73.

Host database

The host database stores the Domain Name Server (DNS) entries of origin servers to which the proxy connects. Among other information, the host database tracks:

- DNS information (for fast conversion of host names to IP addresses)
- The HTTP version of each host (so advanced protocol features can be used with hosts running modern servers)
Host reliability and availability information (to avoid waits for non-functional servers)

DNS resolver

For transparent proxy deployments, the proxy includes an asynchronous DNS resolver to streamline conversion of host names to IP addresses. Content Gateway implements the DNS resolver natively, directly issuing DNS command packets, rather than relying on resolver libraries. Many DNS queries can be issued in parallel and a fast DNS cache maintains popular bindings in memory, reducing DNS traffic.

Important
Should the Linux system DNS server configuration change (/etc/resolv.conf), you must restart Content Gateway.

Processes

Content Gateway has 4 primary processes:

<table>
<thead>
<tr>
<th>Process name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>content_gateway</td>
<td>Accepts connections, processes protocol requests, and serves documents from the cache or origin server.</td>
</tr>
<tr>
<td>content_manager</td>
<td>Launches, monitors, and reconfigures the <code>content_gateway</code> process. The <code>content_manager</code> process is also responsible for the Content Gateway manager user interface, the proxy auto-configuration port, the statistics interface, cluster administration, and virtual IP failover. If the <code>content_manager</code> process detects a <code>content_gateway</code> process failure, it restarts the process and also maintains a connection queue of all incoming requests. Incoming connections that arrive in the several seconds before server restart are saved in the connection queue and processed in sequence. This connection queuing shields users from server restart downtime.</td>
</tr>
<tr>
<td>content_cop</td>
<td>Monitors the health of <code>content_gateway</code> and <code>content_manager</code>. The <code>content_cop</code> process periodically (several times each minute) queries <code>content_gateway</code> and <code>content_manager</code> by issuing heartbeat requests to fetch synthetic Web pages. If no response is received within the timeout interval or if an incorrect response is received, <code>content_cop</code> restarts <code>content_manager</code> and <code>content_gateway</code>.</td>
</tr>
<tr>
<td>analytics_server</td>
<td>Manages the requests made and processes spawned for Content Classification Analytics.</td>
</tr>
</tbody>
</table>
Administration tools

Help | Content Gateway | Version 8.1.x

The primary Content Gateway configuration and administration tool is the web-based graphical user interface that is accessible through your browser. The Content Gateway manager offers password-protected, SSL-encrypted, single-point administration for an entire Content Gateway cluster. The Content Gateway manager provides graphs and statistical displays for monitoring Content Gateway performance and network traffic, and options for configuring and fine-tuning the proxy.

Sometimes it is convenient or necessary to use the Content Gateway command-line interface. You can execute individual commands or script a series of commands in a shell. This method is only partially available when Content Gateway is installed on a Websense appliance. Use the Content Gateway manager and the Appliance manager Command Line Utility instead.

Like the command line interface, it is sometimes convenient or necessary to make configuration changes in Content Gateway configuration files. They support administration through a file-editing and signal-handling interface. Any changes you make through the Content Gateway manager or command-line interface are automatically made to the configuration files.

See:

Content Gateway manager, page 111
Command-line interface, page 112
Configuration files, page 113

Proxy traffic analysis features

Help | Content Gateway | Version 8.1.x

Content Gateway provides options for network traffic analysis and monitoring:

- **Manager statistics and graphs** show network traffic information. View graphs and statistics from the Content Gateway manager, or collect and process statistics using the command-line interface.

- A variety of **Performance** graphs show historical information about virtual memory usage, client connections, document hit rates, and so on. View **Performance** graphs in the Content Gateway manager.

- **Manager alarms** are presented in the Content Gateway manager. Content Gateway signals an alarm for any detected failure condition. You can configure Content Gateway to send email or page support personnel when an alarm occurs.

Content Gateway also sends select alarms to the Web module of the TRITON Manager, where they are referred to as **alerts**. Summary alert messages are displayed on the Web > Status > Today page. The full alert message is displayed
on the Alerts page. TRITON administrators can configure which Content Gateway conditions cause alert messages to be sent, and which methods (email or SNMP) are used to send the alert.

- **Transaction logging** lets you record information in a log file about every request the proxy receives and every error it detects. Use the logs to determine how many people use the proxy, how much information each person requested, and which pages are most popular. You can see why a transaction was in error and see the state of the proxy cache at a particular time. For example, you can see that Content Gateway was restarted or that cluster communication timed out.

Content Gateway supports several standard log file formats, such as Squid and Netscape, and its own custom format. You can analyze the standard format log files with off-the-shelf analysis packages. To help with log file analysis, separate log files so that they contain information specific to protocol or hosts.

For traffic analysis options, see *Monitoring Traffic*, page 117. For logging options, see *Working With Log Files*, page 243.

Online Help

Click on **Get Help!** on any page in the Content Gateway manager to get detailed information about using the product.

Important

Default Microsoft Internet Explorer settings may block operation of the Help system. If a security alert appears, select **Allow Blocked Content** to display Help.

If your organization’s security standards permit, you can permanently disable the warning message on the Advanced tab of the **Tools > Internet Options** interface. (Check **Allow active content to run in files on My Computer** under Security options.)

To access a PDF version of online help, or to access **Release Notes**, installation and deployment information, FAQs, tips, and other technical information, go to the Websense Technical Library.

Technical Support

Technical information about Websense products is available 24 hours a day at:

http://support.websense.com
In the Support site you will find:

- Tips
- Customer Forums
- Latest release information
- Searchable Websense Knowledge Base
- Latest hotfixes and patches
- Show-Me tutorials and videos
- Product documents
- Technical Library
- Answers to frequently asked questions
- In-depth technical papers
- Monthly Support Webinars
- Technical Alerts
- Most Popular Solutions

The Websense Support site offers access to all technical resources, including opening a case through the Service Request portal.
Getting Started

After you have installed Content Gateway on your system or all of the nodes in your cluster, the proxy is ready for use.

Refer to the following procedures to get started:

- Accessing the Content Gateway manager, page 11
- Entering your subscription key, page 16
- Verifying that the proxy is processing Internet requests, page 18
- Using the command-line interface, page 18
- Starting and stopping Content Gateway on the Command Line, page 19

Accessing the Content Gateway manager

The web browser-based Content Gateway manager is the management console for Content Gateway.

The Content Gateway manager is supported on:

- Microsoft Internet Explorer 8, 9, 10, and 11
- Mozilla Firefox versions 5 and later
- Google Chrome 13 and later; use of Chrome with some extensions (add-ons) may result in unexpected behavior

Use of other browsers and versions may result in unexpected behavior.

Java and JavaScript must be enabled in your browser. See your browser documentation for information on enabling Java and JavaScript.

There are 3 ways to access the Content Gateway manager:

- From the Content Gateway button in the TRITON Manager.* For configuring access from the Web module of the TRITON Manager, see the Administrator Help for the Web module. (Not available with AP-DATA Web Content Gateway)
Getting Started

- By entering the IP address and port of the Content Gateway host system in your browser. See below.
- When Content Gateway is a module on a Websense appliance, by opening the appliance Logon portal and clicking the Content Gateway button.

*When two-factor authentication (certificate or RSA SecurID) is configured in the TRITON Manager, the only way to access the Content Gateway manager is through the Web module of the TRITON Manager. See Configuring Content Gateway for two-factor authentication, page 13.

To access the Content Gateway manager directly:

1. Open your Web browser and enter:
 https://nodename:adminport
 where nodename is the IP address of Content Gateway and adminport is the port number assigned to the Content Gateway manager (default: 8081).
 For more information on using HTTPS to start the Content Gateway manager, see Using SSL for secure administration, page 180.
2. Log on to the Content Gateway manager with the administrator ID (default: admin) and password, or your user account.
 The Content Gateway manager password is set during installation.
 You can change the ID and password, as well as create and modify user accounts. See Controlling access to the Content Gateway manager, page 178.

The Content Gateway manager opens to the Monitor > My Proxy > Summary page. This page provides information on the features of your subscription and details of your Content Gateway system. See Viewing statistics, page 117, for additional information on the Monitor tab and Configuring the System, page 111 for information on the configuration options in the Content Gateway manager.

Security certificate alerts

An SSL connection is used for secure, browser-based communication with the Content Gateway manager. This connection uses a security certificate issued by Websense, Inc. Because the supported browsers do not recognize Websense, Inc., as a known Certificate Authority, a certificate error displays the first time you launch the Content Gateway manager from a new browser. To avoid seeing this error, install or
permanently accept the certificate within the browser. See your browser documentation for details.

Note

If you are using Internet Explorer, the certificate error will still be present after you accept the certificate. You must close and reopen your browser to remove the error message.

Windows 7 considerations

If you are using Windows 7, you may need to run the browser as administrator for it to allow ActiveX controls.

1. Right-click the browser application and select Run as administrator.
2. Log on to the Content Gateway manager and accept the security certificate as described above.

Logging off of the manager

How you log on to Content Gateway manager affects the log off behavior.

If you log on to Content Gateway manager from the Web module of the TRITON Manager using single sign-on, when you log off of Content Gateway manager your session is closed.

However, if you log on to Content Gateway manager directly, when you click the Log Off button, your session is not closed until you close all open browser windows.

Configuring Content Gateway for two-factor authentication

Two-factor (certificate) authentication (not available with AP-DATA Web Content Gateway):

- Is configured for and applies to the TRITON Manager logon only.
- Requires administrators to provide 2 forms of identification to log on.
- Can be made to apply to the Content Gateway manager by forcing administrators to log on to the TRITON Manager before accessing the Content Gateway manager.
- Requires single sign-on to be configured for administrators allowed access to the Content Gateway manager.
- Requires that the password logon capability be disabled on Content Gateway (see below), preventing administrators not configured for single sign-on from accessing the Content Gateway manager. If Content Gateway is deployed on an appliance, password access is disabled using an appliance manager command. See the V-Series or X-Series CLI Help.
For more information about configuring two-factor authentication, see “Configuring Certificate Authentication” in TRITON Manager Help.

Disabling and enabling Content Gateway password logon

The Content Gateway manager password logon can be disabled to allow two-factor authentication only, or single sign-on access from the TRITON console.

Important

If Content Gateway is installed on a Websense appliance, see Appliance Manager Help for details.

To disable password logon:

1. Make sure members of the Super Administrators group in the Web module of the TRITON Manager have Content Gateway Direct Access (single sign-on) permissions.
2. If two-factor authentication will be used, set up two-factor authentication in the TRITON Manager.
3. Log on to the Content Gateway host system and acquire root privileges.
4. Change directory to “/etc” and check to see if there is a “websense” subdirectory. If not, create one (“mkdir websense”).
5. Change directory to “websense” (path is now “/etc/websense”) and check to see if the file “password-logon.conf” exists.
6. If not, create it (“touch password-logon.conf”).
7. Edit “password-logon.conf”.
8. Add the line, or modify the existing line to:

 password-logon=disabled

9. Write and exit the file.

The change takes effect immediately. There is no need to restart Content Gateway.

To re-enable password logon for all administrators:

1. Log on to the Content Gateway host system and acquire root privileges.
2. Change directory to “/etc/websense”.
3. Edit “password-logon.conf” and change:

 password-logon=disabled

to:

 password-logon=enabled

4. Write and exit the file.

The change takes effect immediately. There is no need to restart Content Gateway.
Accessing the Content Gateway manager if you forget the master administrator password

During installation, you can specify an administrator password. The installer automatically encrypts the password and stores the encrypted password in the `records.config` file. Each time you change passwords in the Content Gateway manager, Content Gateway updates the `records.config` file.

If you forget the administrator password and cannot access the Content Gateway manager, you can clear the current password in the `records.config` file (set the value of the configuration variable to NULL) and then enter a new password in the Content Gateway manager. You cannot set passwords in the `records.config` file because the password variables can contain only password encryptions or the value NULL.

1. Open the `records.config` file in `/opt/WCG/config`.
2. Set the variable `proxy.config.admin.admin_password` to NULL to leave the password blank.
3. Save and close the file.
4. From the Content Gateway `bin` directory (`/opt/WCG/bin`), run `./content_line -x` to apply the changes.
5. Log on to the Content Gateway manager. When prompted for the user name and password, enter the administrator ID. For the password, enter:

 Gateway#123

 An Alarm will display telling you that you are using the default password and reminding you to reset it.
6. Navigate to the **Configure > My Proxy > UI Setup > Login** tab.
7. In the **Administrator** section, leave the Old Password field empty. Type the new password in the **New Password** field, and then retype the new password in the **New Password (Retype)** field.

 Passwords must be 8 to 15 characters and include at least one:
Getting Started

- Uppercase character
- Lowercase character
- Number
- Special character

Supported characters include:

! # % & ' () * + , - . / ; <= ? [] ^ _ { } ~

The following special characters are not supported:

Space $: ` \ "

8. Click **Apply**.
 The next time you access the Content Gateway manager, you must use the new password.

Entering your subscription key

When Content Gateway is deployed with TRITON AP-WEB, there is no need to enter a subscription key in the Content Gateway manager. The TRITON AP-WEB key is automatically shared with Content Gateway.

Note

The Web module instance that is used is determined by the Policy Server that is configured. The configured Policy Server IP address is shown in the Content Gateway manager on the **Monitor > My Proxy > Summary** page when the **More Details** view is selected.

To configure Policy Server:

- In the V-Series manager go to **Configuration > Web Components**.
- On a software install, edit `/opt/WCG/websense.ini` and set the value of **PolicyServerIP**. Then stop and start Content Gateway processes:

```
/opt/WCG/WCGAdmin stop
/opt/WCG/WCGAdmin start
```
When Content Gateway is deployed with only TRITON AP-DATA, you will need to enter your subscription key manually.

1. Go to the Configure > My Proxy > Subscription > Subscription Management page of the Content Gateway manager.
2. Enter your key in the field provided.
3. Click Apply.

Providing system information

To complete configuration of Policy Server and Filtering Service timeout conditions and action (permit or block traffic), perform the following:

1. Go to the Configure > My Proxy > Subscription > Scanning tab. Notice the IP address and port of Filtering Service. This is the information that you entered when you installed TRITON AP-WEB.
2. Review the Communication Timeout setting. This is the time, in milliseconds, that Content Gateway waits on communication with Policy Server or Filtering Service before timing out and triggering the Action for Communication Errors setting.
 The default timeout value is 5000 ms (5 seconds). If you change the value, you must restart Content Gateway.
3. In the Action for Communication Errors section, select to permit or block traffic if a communication timeout condition occurs. When a timeout occurs, Content Gateway applies the setting and regularly polls the services to detect their return to service.
4. (TRITON AP-WEB only) Use the Scanning Data Files Update section to configure a delay for the download of the security scanning data files used by Content Gateway analysis. Select a Delay time from the drop-down provided.
 Keep in mind that the longer the delay, the higher the security risk. The Suspend updates option is not recommended for use for an extended period of time. Selecting it will prompt an alarm as a reminder that data file downloads have been suspended. It is recommended that you not clear the alarm until Delay time has been reset.

When a delay time is in place, there may be up to 2 sets of data files present on the Content Gateway machine.
- The current set of data files that are being used by the analytics.
- The set of data files whose complete download is being delayed.

Once the delay period is met, the delayed database will be moved to the current set of files and the delay period will be applied to next download.

This feature is typically used for a backup system.
5. Click **Apply**.

Verifying that the proxy is processing Internet requests

After you have installed the proxy, verify that it is processing requests for Web content.

1. Open the Content Gateway manager. See *Accessing the Content Gateway manager*, page 11.
2. Go to the **Monitor > My Proxy > Summary** page to view subscription detail, scanning file status, and node details, including the number of objects served, the hit rate, and other basic proxy service information.
3. Navigate to **Monitor > Protocol > HTTP > General** to display the General HTTP Statistics table.
4. Note the current **Total Document Bytes** statistic in the **Client** section of the table.

Check the value of this statistic.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Current Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Document Bytes</td>
<td>1.6 GB</td>
</tr>
<tr>
<td>Total Header Bytes</td>
<td>1.7 MB</td>
</tr>
<tr>
<td>Total Connections</td>
<td>34,758</td>
</tr>
<tr>
<td>Current Connections</td>
<td>0</td>
</tr>
<tr>
<td>Transactions in Progress</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Set your browser to the proxy port.
6. Browse the Internet.
7. Recheck the **Total Document Bytes** statistic.
 This value increases as the proxy processes HTTP requests.

Using the command-line interface
The command-line interface provides a quick way to view proxy statistics and configure Content Gateway if you do not have access to a browser or if you prefer to use a UNIX shell-like command interface.

- **Note**
 The command-line interface is not available when Content Gateway is installed on a Websense appliance. Use the Content Gateway manager and the V-Series or X-Series manager Command Line Utility instead.

You can execute individual commands or script multiple commands in a shell. See *Websense Content Gateway commands*, page 295.

1. Become root:
   ```
su
   ```

2. Change to the Content Gateway `bin` directory (/opt/WCG/bin). Run Content Gateway commands from this directory.
 Commands take the form:
   ```
   content_line -command argument
   ```

3. For a list of `content_line` commands, enter:
   ```
   content_line -h
   ```

- **Note**
 If the Content Gateway `bin` directory is not in your path, prepend the command with: `/`
 For example:
  ```
  ./content_line -h
  ```

Starting and stopping Content Gateway on the Command Line

Help | Content Gateway | Version 8.1.x

To stop or start Content Gateway from the command line:

1. Become root:
   ```
   su
   ```

2. Change to the Content Gateway installation directory (/opt/WCG).

To start the proxy:
   ```
   ./WCGAdmin start
   ```

To stop the proxy

.\WCGAdmin stop

To restart the proxy

.\WCGAdmin restart

To see what Content Gateway services are running:

.\WCGAdmin status

After you have installed Content Gateway, open the Content Gateway manager (the management interface) to verify that the proxy is running. See Accessing the Content Gateway manager, page 11 and Verifying that the proxy is processing Internet requests, page 18.

The no_cop file

The presence of the /opt/WCG/config/internal/no_cop file acts as an administrative control that instructs the content_cop process to exit immediately without starting content_manager or performing any health checks. The no_cop file prevents the proxy from starting automatically when it has been stopped with the .\WCGAdmin stop command.

Without such a static control, Content Gateway would restart automatically upon system reboot. The no_cop control keeps Content Gateway off until it is restarted with the .\WCGAdmin start command.

When the no_cop file prevents Content Gateway from starting, the following message is recorded in the system log file:

content_cop[16056]: encountered "config/internal/no_cop" file...exiting
Web proxy caching stores copies of frequently accessed Web objects (such as documents, images, and articles) close to users and serves this information to them. Internet users get their information faster, and Internet bandwidth is freed for other tasks.

Internet users direct their requests to Web servers all over the Internet. For a caching server to serve these requests, it must act as a Web proxy server. A Web proxy server receives user requests for Web objects and either serves the requests or forwards them to the origin server (the Web server that contains the original copy of the requested information).

Content Gateway supports both transparent proxy deployment, in which the user’s client software (typically a browser) is unaware that it is communicating with a proxy, and explicit proxy deployment, in which the user’s client software is configured to send requests directly to the proxy.

Cache requests

The following overview illustrates how Content Gateway serves a user request.

1. Content Gateway receives a user request for a Web object.
2. Using the Web address, the proxy tries to locate the requested object in its object store (cache).

3. If the object is in the cache, the proxy checks to see if the object is fresh enough to serve (see *Ensuring cached object freshness*, page 22). If the object is fresh, the proxy serves it to the user as a cache hit.

4. If the data in the cache is stale, the proxy connects to the origin server and asks if the object is still fresh (a revalidation). If the object is still fresh, the proxy sends the cached copy to the user.

5. If the object is not in the cache (a cache miss) or the server indicates that the cached copy is no longer valid, the proxy obtains the object from the origin server, simultaneously streaming it to the user and the cache. Subsequent requests for the object will be served faster because the object will come directly from the cache.

Content Gateway can store and serve Java applets, JavaScript programs, VBScripts, and other executable objects from its cache according to the freshness and cacheability rules for HTTP objects. Content Gateway does not execute the applets, scripts, or programs. These objects run only when the client system that sent the request loads them.

Content Gateway does not store partial documents in the cache. Should a client disconnect while an HTTP or FTP download is underway, Content Gateway continues the download for up to 10 seconds after the disconnect. If the transfer completes successfully, Content Gateway stores the object in the cache. If the download does not complete, Content Gateway disconnects from the origin server and deletes the object from the cache.

Ensuring cached object freshness

When Content Gateway receives a request for a Web object, it tries to locate the requested object in its cache. If the object is in the cache, the proxy checks to see if the object is fresh enough to serve.

The protocol determines how the proxy handles object freshness in the cache:

- **HTTP objects** support author-specified expiration dates. The proxy adheres to these expiration dates; otherwise, it picks an expiration date based on how frequently the object is changing and on administrator-chosen freshness guidelines. In addition, objects can be revalidated, checking with the origin server if an object is still fresh. See *HTTP object freshness*, page 22.

- **FTP objects** stay in the cache for a specified time period. See *FTP object freshness*, page 26.

HTTP object freshness

Help | Content Gateway | Version 8.1.x

When Content Gateway receives a request for a Web object, it tries to locate the requested object in its cache. If the object is in the cache, the proxy checks to see if the object is fresh enough to serve.

The protocol determines how the proxy handles object freshness in the cache:

- **HTTP objects** support author-specified expiration dates. The proxy adheres to these expiration dates; otherwise, it picks an expiration date based on how frequently the object is changing and on administrator-chosen freshness guidelines. In addition, objects can be revalidated, checking with the origin server if an object is still fresh. See *HTTP object freshness*, page 22.

- **FTP objects** stay in the cache for a specified time period. See *FTP object freshness*, page 26.
Content Gateway determines whether an HTTP object in the cache is fresh by:

- **Checking the** **Expires** **or max-age** **header**

 Some HTTP objects contain **Expires** headers or **max-age** headers that define how long the object can be cached. Comparing the current time with the expiration time tells the proxy whether or not the object is fresh.

- **Checking the** **Last-Modified / Date** **headers**

 If an HTTP object has no **Expires** header or **max-age** header, the proxy can calculate a freshness limit using the following formula:

 \[
 \text{freshness	extunderscore limit} = (\text{date} - \text{last	extunderscore modified}) \times 0.10
 \]

 where \text{date} is the date in the object’s server response header, and \text{last	extunderscore modified} is the date in the **Last-Modified** header. If there is no **Last-Modified** header, the proxy uses the date that the object was written to cache. You can increase or reduce the value 0.10 (10 percent). See *Modifying the aging factor for freshness computations*, page 23.

 The computed freshness limit is bound by minimum and maximum boundaries. See *Setting an absolute freshness limit*, page 24.

- **Checking the absolute freshness limit**

 For HTTP objects that do not have **Expires** headers or do not have both **Last-Modified** and **Date** headers, the proxy uses a maximum and minimum freshness limit. See *Setting an absolute freshness limit*, page 24.

- **Checking revalidate rules in the** **cache.config** **file**

 Revalidate rules apply freshness limits to specific HTTP objects. You can set freshness limits for objects originating from particular domains or IP addresses, objects with URLs that contain specified regular expressions, and objects requested by particular clients, for example. See *cache.config*, page 399.

Modifying the aging factor for freshness computations

If an object does not contain any expiration information, Content Gateway can estimate its freshness from the **Last-Modified** and **Date** headers. By default, the proxy stores an object for 10% of the time that elapsed since it last changed. You can increase or reduce the percentage.

1. Open the **records.config** file located in the Content Gateway **config** directory.
2. Edit the following variable:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.http.cache.heuristic_lm_factor</code></td>
<td>Specify the aging factor for freshness computations. The default value is 0.10 (10 percent).</td>
</tr>
</tbody>
</table>

3. Save and close the file.
4. To apply the changes, run the following command from the Content Gateway **bin** directory:

```
content_line -x
```

Setting an absolute freshness limit

Help | Content Gateway | Version 8.1.x

Some objects do not have *Expires* headers or do not have both *Last-Modified* and *Date* headers. You can control how long these objects are considered fresh in the cache by specifying an absolute freshness limit. A longer lifetime means objects are kept in the cache longer. Performance can improve if pages are taken from the cache rather than going out to the network.

1. Navigate to the **Configure > Protocols > HTTP > Cacheability** tab.
2. In the **Minimum Heuristic Lifetime** area of the **Freshness** section, specify the minimum amount of time that HTTP objects without an expiration date can remain fresh in the cache before being considered stale. The default value is 3600 seconds (1 hour).
3. In the **Maximum Heuristic Lifetime** field, specify the maximum amount of time that HTTP objects without an expiration date can remain fresh in the cache before being considered stale. The default value is 86400 seconds (1 day).
4. Click **Apply**.

Specifying header requirements

Help | Content Gateway | Version 8.1.x

To ensure freshness of the objects in the cache, configure Content Gateway to cache only objects with specific headers.

Warning

By default, the proxy caches all objects (including objects with no headers). Websense recommends that you change the default setting only for specialized proxy situations. If you configure the proxy to cache only HTTP objects with *Expires* or *max-age* headers, the cache hit rate will be seriously reduced (very few objects have explicit expiration information).

1. Navigate to the **Configure > Protocols > HTTP > Cacheability** tab.
2. In the **Required Headers** area of the **Behavior** section, select one of the following:
 - **An Explicit Lifetime Header** to cache only HTTP objects with *Expires* or *Cache-Control* headers.
 - **A Last-Modified Header** to cache only HTTP objects with *Expires* or *Last-Modified* headers.
- **No Required Headers** to cache all HTTP objects (no specific headers are required). This is the default.

3. Click **Apply**.

Cache-Control headers

Even though an object might be fresh in the cache, clients or servers might have constraints that prevent them from retrieving the object from the cache. For example, a client might request that an object not come from a cache, or if it does, it cannot have been cached for more than 10 minutes.

Content Gateway bases the servability of a cached object on **Cache-Control** headers. **Cache-Control** headers can appear in both client requests and server responses.

The following **Cache-Control** headers affect whether objects are served from the cache:

- The **no-cache** header, sent by clients, tells the proxy to serve no objects directly from the cache; always obtain the object from the origin server. You can configure the proxy to ignore client **no-cache** headers (see **Configuring the proxy to ignore client no-cache headers**, page 31).

- The **max-age** header, sent by servers, is compared to the object age; if the age is less than **max-age**, the object is fresh and can be served.

- The **min-fresh** header, sent by clients, is an *acceptable freshness tolerance*. The client wants the object to be at least this fresh. If a cached object does not remain fresh at least this long in the future, it is revalidated.

- The **max-stale** header, sent by clients, permits the proxy to serve stale objects provided they are not too old. Some browsers might be willing to take slightly old objects in exchange for improved performance, especially during periods of poor Internet availability.

The proxy applies Cache-Control servability criteria after HTTP freshness criteria. For example, an object might be considered fresh, but if its age is greater than its **max-age**, it is not served.

Revalidating HTTP objects

When a client requests an HTTP object that is stale in the cache, Content Gateway revalidates the object, querying the origin server to check if the object is unchanged. Revalidation results in one of the following:

- If the object is still fresh, the proxy resets its freshness limit and serves the object.

- If a new copy of the object is available, the proxy caches the new object, replacing the stale copy, and serves the object to the user simultaneously.

- If the object no longer exists on the origin server, the proxy does not serve the cached copy.
- If the origin server does not respond to the revalidation query, the proxy does not perform any validation; it serves the stale object from the cache.

By default, the proxy revalidates a requested HTTP object in the cache if it considers the object to be stale. The proxy evaluates object freshness as described in "HTTP object freshness", page 22. You can configure how often you want the proxy to revalidate an HTTP object.

1. Navigate to the Configure > Protocols > HTTP > Cacheability tab.
2. In the When to Revalidate area of the Behavior section, select:
 - Never Revalidate to never verify the freshness of a requested HTTP object with the origin server.
 - Always Revalidate to always verify the freshness of a requested HTTP object with the origin server.
 - Revalidate if Heuristic Expiration to verify the freshness of a requested HTTP object with the origin server if the object contains no Expires or Cache-Control headers. Content Gateway considers all HTTP objects without Expires or Cache-Control headers to be stale.
 - Use Cache Directive or Heuristic to verify the freshness of a requested HTTP object with the origin server when Content Gateway considers the object in the cache to be stale. This is the default.
3. Click Apply.

FTP object freshness

FTP objects carry no time stamp or date information and remain fresh in the cache for the period of time you specify (from 15 minutes to 2 weeks), after which they are considered stale.

FTP objects can be requested from either an HTTP client (such as a browser) or an FTP client (such as WS_FTP). Content Gateway caches only the FTP objects requested from HTTP clients.
FTP objects requested by HTTP clients

You can set an absolute freshness limit for FTP objects requested by HTTP clients (FTP over HTTP objects).

Note

In addition to setting an absolute freshness limit for all FTP objects requested by HTTP clients, you can set freshness rules for specific FTP objects in the cache.config file (see cache.config, page 399).

1. Navigate to Configure > Protocols > HTTP > Cacheability.
2. In the FTP Document Lifetime area of the Freshness section, enter the amount of time that FTP objects requested by HTTP clients can remain fresh in the cache before being considered stale. The default value is 259200 seconds (3 days).
3. Click Apply.

Scheduling updates to local cache content

To further increase performance and to ensure that HTTP and FTP objects (requested from HTTP clients) are fresh in the cache, you can use the Scheduled Update option to configure the proxy to load specific objects into the cache at scheduled times.

To use the Scheduled Update option:

- Specify the list of URLs that contain the objects you want to schedule for update, the time the update should take place, and the recursion depth for the URL.
- Enable the Scheduled Update option and configure optional retry settings.

See Configuring the Scheduled Update option, page 28 for more information.

Content Gateway uses the information you specify to determine the URLs for which it is responsible and, for each URL, derives all recursive URLs if applicable. It then generates a unique URL list. Using this list, the proxy initiates an HTTP GET for each unaccessed URL, ensuring that it remains within the user-defined limits for HTTP concurrency at any given time.

Note

The system logs the completion of all HTTP GET operations, enabling you to monitor the performance of this feature.

The Force Immediate Update option that enables you to update URLs without waiting for the specified update time to occur. You can use this option to test your scheduled
update configuration. See *Forcing an immediate update*, page 28.

Configuring the Scheduled Update option

1. Navigate to **Configure > Protocols > HTTP Scheduled Update > Update URLs**.
2. In the **Scheduled Object Update** area, click **Edit File** to open the configuration file editor for the **update.config** file.
3. Enter the following information:
 - In the **URL** field, enter the URL you want to schedule for update.
 - *Optional.* In the **Request Headers** field, enter the semicolon-separated list of headers passed in each **GET** request. You can define any request header that conforms to the HTTP specification.
 - In the **Offset Hour** field, enter the base hour used to derive the update periods. You can specify a value in the range 00 to 23.
 - In the **Interval** field, enter the interval (in seconds) at which updates occur, starting at the offset hour.
 - In the **Recursion Depth** field, enter the depth to which referenced URLs are recursively updated, starting at the given URL. For example, a recursion depth of 1 updates the given URL, as well as all URLs immediately referenced by links from the original URL.
4. Click **Add**, and then click **Apply**.
5. Click **Close**.
6. Click the **General** tab.
7. Enable **Scheduled Update**.
8. In the **Maximum Concurrent Updates** field, enter the maximum number of simultaneous update requests allowed at any time to prevent the scheduled update process from overburdening the host. The default is 100.
9. In the **Count** field of the **Retry on Update Error** section, enter the number of times you want to retry the scheduled update of a URL in the event of failure. The default value is 10.
10. In the **Interval** field of the **Retry on Update Error** section, enter the delay in seconds between each scheduled update retry for a URL in the event of failure. The default value is 2.
11. Click **Apply**.

Forcing an immediate update

Forcing an immediate update
The Force Immediate Update option lets you verify the URLs listed in the `update.config` file immediately. This option disregards the offset hour and interval set in the `update.config` file and updates the URLs listed.

Important

When you enable the Force Immediate Update option, the proxy continually updates the URLs specified in the `update.config` file until you disable the option.

1. Navigate to **Configure > Protocols > HTTP Scheduled Update > General**.
2. Ensure that **Scheduled Update** is enabled.
3. Click the **Update URLs** tab.
4. Enable **Force Immediate Update**.
5. Click **Apply**.

Pinning content in the cache

The cache pinning option configures Content Gateway to keep certain HTTP objects (and FTP objects requested from HTTP clients) in the cache for a specified time. Use this option to ensure that the most popular objects are in the cache when needed and that the proxy does not delete important objects from the cache.

Note

The proxy observes Cache-Control headers and pins an object in the cache only if it is cacheable.

To use cache pinning, perform the following tasks:

- Set cache pinning rules in the `cache.config` file. See *Setting cache pinning rules*, page 29.
- Enable the cache pinning option. See *Enabling cache pinning*, page 30.

Setting cache pinning rules

1. Navigate to **Configure > Protocols > HTTP > Cacheability**.
2. Click **Edit File** at the end of the page to display the configuration file editor for the `cache.config` file.
3. In the fields provided, supply the following information:
 - From the **Rule Type** drop-down box, select **pin-in-cache**.
- From the **Primary Destination Type** drop-down box, select **url_regex**.
- In the **Primary Destination Value** field, specify the URL you want to pin in the cache.
- In the **Time Period** field, specify the amount of time that the proxy pins the object in the cache.

 In addition, you can add secondary specifiers (such as **Prefix** and **Suffix**) to the rule. All the fields are described under *HTTP*, page 314.

4. Click **Add** to add the rule to the list, and then click **Apply**.
5. Click **Close**.

Enabling cache pinning

Help | Content Gateway | Version 8.1.x

1. On **Configure > Subsystems > Cache > General**, enable **Allow Pinning**.
2. Click **Apply**.

To cache or not to cache?

Help | Content Gateway | Version 8.1.x

When Content Gateway receives a request for a Web object that is not in the cache, it retrieves the object from the origin server and serves it to the client. At the same time, the proxy checks if the object is cacheable before storing it in its cache to serve future requests.

Content Gateway determines if an object is cacheable based on protocol:

- For HTTP objects, the proxy responds to caching directives from clients and origin servers. In addition, you can configure the proxy not to cache certain objects. See *Caching HTTP objects*, page 30.
- For FTP objects, the proxy responds to caching directives you specify through configuration options and files. See *Caching FTP objects*, page 37.

Caching HTTP objects

Help | Content Gateway | Version 8.1.x

Content Gateway responds to caching directives from clients and origin servers, as well as directives you specify through configuration options and files.

This section discusses the following topics:

- **Client directives**, page 31
- **Origin server directives**, page 32
By default, Content Gateway does not cache objects with the following request headers:

- **Cache-Control: no-store**
- **Cache-Control: no-cache**

Note

You can configure the proxy to ignore the **Cache-Control: no-cache** header. See *Configuring the proxy to ignore client no-cache headers*, page 31.

- **Cookie:** (for text objects)
 By default, the proxy caches objects served in response to requests that contain cookies unless the object is text. You can configure the proxy to not cache cookieed content of any type, cache all cookieed content, or cache cookieed content that is of image type only. See *Caching cookieed objects*, page 35.

- **Authorization:**

Note

FTP objects requested from HTTP clients can also contain **Cache-Control: no-store**, **Cache-Control: no-cache**, or **Authorization** headers. If an FTP object requested from an HTTP client contains such a header, the proxy does not cache it unless explicitly configured to do so.

Configuring the proxy to ignore client no-cache headers

By default, Content Gateway observes client **Cache Control:no-cache** directives. If a requested object contains a **no-cache** header, the proxy forwards the request to the origin server even if it has a fresh copy in the cache.
You can configure the proxy to ignore client **no-cache** directives. In this case, the proxy ignores **no-cache** headers from client requests and serves the object from its cache.

Important

The default behavior of observing **no-cache** directives is appropriate in most cases. Configure Content Gateway to ignore client **no-cache** directives only if you are knowledgeable about HTTP 1.1.

1. Navigate to **Configure > Protocols > HTTP > Cacheability**.
2. In the **Behavior** section, enable the **Ignore “no-cache” in Client Requests** option.
3. Click **Apply**.

Note

Certain versions of Microsoft Internet Explorer do not request cache reloads from transparent caches when the user presses the browser **Refresh** button. This can prevent content from being loaded directly from the origin server. You can configure Content Gateway to treat Microsoft Internet Explorer requests more conservatively, providing fresher content at the cost of serving fewer documents from the cache. You can configure the proxy to add **no-cache** headers to requests from Microsoft Internet Explorer in the Content Gateway manager (in the **Behavior** section of the **Configure > Protocols > HTTP > Cacheability** tab).

Origin server directives

By default, Content Gateway does not cache objects with the following response headers:

- **Cache-Control: no-store**
- **Cache-Control: private**
- **WWW-Authenticate:**

Note

You can configure the proxy to ignore **WWW-Authenticate** headers. See *Configuring the proxy to ignore WWW-Authenticate headers*, page 34.
Set-Cookie:
Cache-Control: no-cache

Note
You can configure the proxy to ignore no-cache headers. See Configuring the proxy to ignore server no-cache headers, page 33.

Expires: header with value of 0 (zero) or a past date

Configuring the proxy to ignore server no-cache headers

By default, Content Gateway observes Cache-Control:no-cache directives. A response from an origin server with a no-cache header is not stored in the cache, and any previous copy of the object in the cache is removed.

Important
If you configure the proxy to ignore no-cache headers, it also ignores no-store headers.

Important
The default behavior of observing no-cache directives is appropriate in most cases. Configure the proxy to ignore origin server no-cache headers only if you are knowledgeable about HTTP 1.1.

You can configure the proxy to ignore origin server no-cache headers.

1. Open the records.config file located in the Content Gateway config directory.
2. Edit the following variable:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.cache.ignore_server_no_cache</td>
<td>Set to 1 to ignore server directives to bypass the cache.</td>
</tr>
</tbody>
</table>

3. Save and close the file.
4. To apply the changes, run the following command from the Content Gateway bin directory:

   ```bash
content_line -x
   ```
Configuring the proxy to ignore WWW-Authenticate headers

By default, Content Gateway does not cache objects that contain **WWW-Authenticate** response headers. The **WWW-Authenticate** header contains authentication parameters that the client uses when preparing the authentication challenge response to an origin server.

Important

You can configure the proxy to ignore origin server **WWW-Authenticate** headers, in which case, objects with **WWW-Authenticate** headers are stored in the cache for future requests.

1. Open the `records.config` file located in the Content Gateway `config` directory.
2. Edit the following variable:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.http.cache.ignore_authentication</code></td>
<td>Set to 1 to cache objects with WWW-Authenticate headers.</td>
</tr>
</tbody>
</table>

3. Save and close the file.
4. To apply the changes, run the following command from the Content Gateway bin directory:

 `content_line -x`

Configuration directives

In addition to client and origin server directives, Content Gateway responds to directives you specify through configuration options and files.

You can configure the proxy to:

- *Not* cache any HTTP objects. See *Disabling HTTP object caching*, page 35.
- Cache dynamic content (objects with URLs that contain a question mark (?), a semicolon (;), or cgi, or that end in .asp). See *Caching dynamic content*, page 35.
- Cache objects served in response to the **Cookie**: header. See *Caching cookied objects*, page 35.
Disabling HTTP object caching

By default, Content Gateway caches all HTTP objects except those for which you have set never cache rules in the cache.config file. You can disable HTTP object caching so that all HTTP objects are served from the origin server and never cached.

1. Navigate to Configure > Protocols > HTTP > Cacheability.
2. Disable HTTP Caching.
3. Click Apply.

Caching dynamic content

A URL is considered dynamic if it contains a question mark (?), a semicolon (;), or cgi, or if it ends in .asp. By default, Content Gateway does not cache dynamic content. However, you can configure the proxy to cache this content.

1. Navigate to Configure > Protocols > HTTP > Cacheability.
2. In the Dynamic Caching section, enable Caching Documents with Dynamic URLs.
3. Click Apply.

Caching cookied objects

By default, Content Gateway caches objects served in response to requests that contain cookies unless the object is text. The proxy does not cache cookied text content, because object headers are stored as well as the object, and personalized cookie header values could be saved with the object.

With non-text objects, personalized headers are unlikely to be delivered or used.

1. Navigate to Configure > Protocols > HTTP > Cacheability.
2. In the Caching Response to Cookies area of the Dynamic Caching section, select a caching option:
 - Select Cache All but Text to cache all cookied content except content that is text (this is the default setting).
 - Select Cache Only Image Types to cache cookied content that is an image.

Warning

It is recommended that you configure the proxy to cache dynamic content for specialized proxy situations only.
- Select **Cache Any Content Type** to cache cookied content of all types.
- Select **No Cache on Cookies** to not cache cookied content of any type.

3. Click **Apply**.

Forcing object caching

You can force Content Gateway to cache specific URLs (including dynamic URLs) for a specified duration regardless of **Cache-Control** response headers.

1. Navigate to **Configure > Protocols > HTTP > Cacheability**.
2. Click **Edit File** at the end of the page to display the configuration file editor for the `cache.config` file.
3. In the fields provided, supply the following information:
 - From the **Rule Type** drop-down box, select **ttl-in-cache**.
 - From the **Primary Destination Type** drop-down box, select **url_regex**.
 - In the **Primary Destination Value** field, specify the URL you want to force cache.
 - In the **Time Period** field, specify the amount of time that the proxy can serve the URL from the cache.
 - In addition, you can add secondary specifiers (such as **Prefix** and **Suffix**) to the rule. All the fields are described in **HTTP**, page 314.
4. Click **Add**, and then click **Apply**.
5. Click **Close**.

Caching HTTP alternates

Some origin servers answer requests to the same URL with a variety of objects. The content of these objects can vary, according to whether a server delivers content for different languages, targets different browsers with different presentation styles, or provides different document formats (HTML, PDF). Different versions of the same object are termed **alternates** and are cached by Content Gateway based on **Vary** response headers.

Configuring how Content Gateway caches alternates

You can specify additional request and response headers for specific content types that the proxy will identify as alternates for caching.

1. Navigate to **Configure > Protocols > HTTP > Cacheability**.
2. In the **Vary Based on Content Type** section, click **Enabled** to cache alternate versions of HTTP documents that do not contain the **Vary** header.

3. Specify additional request and response headers for the proxy server to identify:
 - In the **Vary by Default on Text** field, enter the HTTP header field on which you want to vary if the request is for text (for example, an HTML document).
 - In the **Vary by Default on Images** field, enter the HTTP header field on which you want to vary if the request is for images (for example, a `.gif` file).
 - In the **Vary by Default on Other Document Types** field, enter the HTTP header field on which you want to vary if the request is for anything other than text or images.

 Note

 If you specify **Cookie** as the header field on which to vary in the above fields, make sure that the appropriate option is enabled in the **Caching Response to Cookies** area of the Dynamic Caching section. For example, if you enable the **Cache Only Image Types** option in the **Caching Response to Cookies** area and you enable the **Vary by Default on Text** option in the **Vary Based on Content Type** section, alternates by cookie will not apply to text.

4. Click **Apply**.

Limiting the number of alternates for an object

You can limit the number of alternates Content Gateway can cache per object. The default number of alternates is 3.

Note

Large numbers of alternates can affect proxy performance because all alternates have the same URL. Although Content Gateway can look up the URL in the index very quickly, it must scan sequentially through available alternates in the object store.

1. Navigate to **Configure > Protocols > HTTP > Cacheability**.
2. In the **Maximum Alternates** field, enter the maximum number of alternate versions of an object you want the proxy to cache. The default value is 3.
3. Click **Apply**.

Caching FTP objects
FTP objects can be requested from either an HTTP client (such as a browser) or an FTP client (such as WS_FTP).

For FTP objects requested from HTTP clients (FTP over HTTP), perform the following configuration to determine what the proxy stores in the cache:

- Disable FTP over HTTP caching so that the proxy does not cache any FTP objects requested from HTTP clients (see Disabling FTP over HTTP caching, page 38).
- Set never cache rules in the cache.config file (see cache.config, page 399).
- Configure the proxy to ignore client Cache-Control: no-store or Cache-Control: no-cache headers (see Configuring the proxy to ignore client no-cache headers, page 31).

Caching is not supported for FTP objects requested from FTP clients.

Disabling FTP over HTTP caching

You can configure Content Gateway not to cache any FTP objects that are requested from HTTP clients by disabling the FTP over HTTP option. The proxy processes the requests by forwarding them to the FTP server but does not cache any requested objects.

1. Navigate to Configure > Protocols > HTTP > Cacheability.
2. In the Caching section, disable FTP over HTTP Caching.
3. Click Apply.
Explicit Proxy

If Internet requests are not transparently routed to Content Gateway via a Layer 4 switch or router (see Transparent Proxy and ARM, page 47), traffic must be explicitly routed to Content Gateway by configuring the client’s Internet browser. (This is sometimes referred to as an explicit proxy deployment.)

Clients can configure their Web browsers in 1 of 3 ways:

- By directly configuring their browsers to send requests directly to the proxy. See Manual browser configuration, page 39.
- By configuring their browsers to download proxy configuration instructions from a PAC (Proxy Auto-Config) file. See Using a PAC file, page 40.
- By using WPAD (Web Proxy Auto-Discovery Protocol) to download proxy configuration instructions from a WPAD server (Microsoft Internet Explorer only). See Using WPAD, page 42.

In addition, if Content Gateway is configured to proxy FTP traffic, FTP client applications, such as FileZilla or WS_FTP, must be configured to explicitly send requests to the proxy. See Configuring FTP clients in an explicit proxy environment, page 43.

Manual browser configuration

To configure a browser to send requests to Content Gateway, clients must provide the following information for each protocol they want the proxy to serve to their browsers:
Explicit Proxy

- The proxy’s hostname or IP address.

Important

If Integrated Windows Authentication is configured for user authentication, the Fully Qualified Domain Name must be used. Specifying the IP address will result in authentication failure. See *Integrated Windows Authentication*, page 199.

- The proxy server port. The Content Gateway default proxy server port is 8080.

Important

Do not set up the IP address of the Content Gateway proxy to be a virtual IP address.

Although the Content Gateway manager does not prohibit the entry of a virtual IP address, the proxy does not function properly if a VIP is used.

In addition, clients can specify not to use the proxy for certain sites. Requests to the listed sites go directly to the origin server.

For Microsoft Internet Explorer version 7.0 and greater, proxy configuration settings are in *Tools > Internet Options > Connections > LAN Settings*. By default, Microsoft Internet Explorer sets all protocols to the same proxy server. To configure each protocol separately, click *Advanced* in the *LAN Settings* section. See the browser documentation for complete proxy configuration instructions.

For Mozilla Firefox 4.0 and later, proxy configuration settings are in *Tools > Options > Advanced > Network > Settings > Connection Settings > Manual Proxy Configuration*. By default, you must configure each protocol separately. However, you can set all protocols to the same proxy server by selecting *Use this proxy server for all protocols*.

You do not have to set configuration options on the proxy to accept requests from manually configured browsers.

Using a PAC file

A PAC file is a JavaScript function definition that a browser calls to determine how requests are handled. Clients must specify in their browser settings the URL from which the PAC file is loaded.
You can store a PAC file on the proxy and provide the URL for this file to your clients. If you have a `proxy.pac` file, copy it into the Content Gateway `config` directory.

Note

- The PAC file can reside on any server in your network. Small networks may store the file on the proxy itself, but large, enterprise-class networks should use a separate server for storing the PAC file.

 If the HTTPS protocol option is enabled, see *Running in explicit proxy mode*, page 143, for information on a PAC file to use with HTTPS traffic.

1. If you have an existing `wpad.dat` file, replace the `wpad.dat` file located in the Content Gateway `config` directory with your existing file.
2. Navigate to the Configure > Content Routing > Browser Auto-Config > PAC tab.
3. In the Auto-Configuration Port field, specify the port that Content Gateway uses to serve the PAC file. The default port is 8083.
4. The PAC Settings area displays the `proxy.pac` file:
 - If you copied an existing PAC file into the Content Gateway `config` directory, the `proxy.pac` file contains your proxy configuration settings. Check the settings and make changes if necessary.
 - If you did not copy an existing PAC file into the Content Gateway `config` directory, the PAC Settings area is empty. Enter the script that provides the proxy server configuration settings. A sample script is provided in Sample PAC file, page 41. See, also, the article titled “PAC File Best Practices” in the Websense Technical Library.
5. Click Apply.
6. Click Restart on Configure > My Proxy > Basic > General.
7. Inform your users to set their browsers to point to this PAC file.

 For example, if the PAC file is located on the proxy server with the hostname `proxy1` and Content Gateway uses the default port 8083 to serve the file, users must specify the following URL in the proxy configuration settings:

   ```
   http://proxy1.company.com:8083/proxy.pac
   ```

The procedures for specifying the PAC file location vary among browsers. For example, for Microsoft Internet Explorer, you set the location of the PAC file in the Use automatic configuration script field under Tools > Internet Options > Connections > LAN Settings. For Mozilla Firefox, proxy configuration settings are in Tools > Options > Advanced > Network > Settings > Connection Settings > Automatic proxy configuration URL. See the documentation for your browser for details.
Sample PAC file

The following sample PAC file instructs browsers to connect directly to all hosts without a fully qualified domain name and to all hosts in the local domain. All other requests go to the proxy server called myproxy.company.com.

```javascript
function FindProxyForURL(url, host)
{
    if (isPlainHostName(host) || dnsDomainIs(host, ".company.com"))
        return "DIRECT";
    else
        return "PROXY myproxy.company.com:8080; DIRECT";
}
```

Using WPAD

WPAD allows Internet Explorer version 7 and later to automatically detect a server that will supply it with proxy server configuration settings. Clients do not have to configure their browsers to send requests to a proxy server: a single server provides the settings to all clients on the network.

Note

WPAD is incompatible with transparent proxy deployments.

When an Internet Explorer version 7 or later browser starts up, it searches for a WPAD server that will supply it with proxy server configuration settings. It prepends the hostname WPAD to the current fully qualified domain name. For example, a client in x.y.company.com searches for a WPAD server at wpad.x.y.company.com. If unsuccessful, the browser removes the bottommost domain and tries again; for example, it tries wpad.y.company.com. The browser stops searching when it detects a WPAD server or reaches the third-level domain, wpad.company.com. The algorithm stops at the third level so that the browser does not search outside the current network.

Note

By default, Microsoft Internet Explorer version 7 and later are set to automatically detect WPAD servers. However, browser users can disable this setting.

You can configure Content Gateway to be a WPAD server:
1. If you have an existing **wpad.dat** file, replace the **wpad.dat** file located in the Content Gateway **config** directory with your existing file.

2. Log on to the Content Gateway manager and go to Configure > Content Routing > Browser Auto-Config > WPAD to display the **wpad.dat** file.

3. The WPAD Settings area displays the **wpad.dat** file:
 - If you copied an existing **wpad.dat** file into the Content Gateway **config** directory, the file contains your proxy configuration settings. Check the settings and make changes if necessary.
 - If you did not copy an existing **wpad.dat** file into the Content Gateway **config** directory (/opt/WCG/config), the WPAD Settings area is empty. Enter a script that will provide the proxy server configuration settings. A sample script is provided in *Sample PAC file*, page 41 (a **wpad.dat** file can contain the same script as a **proxy.pac** file).

4. Click **Apply**.

5. Navigate to Configure > Networking > ARM.

6. In the Network Address Translation (NAT) section, click **Edit File** to add a special remap rule to the **ipnat.conf** file.

7. Enter information in the fields provided, and then click **Add**:
 - In the Ethernet Interface field, enter the network interface that receives browser WPAD requests (for example hme0 or eth0).
 - From the Connection Type drop-down list, select **tcp**.
 - In the Destination IP field, enter the IP address of the Content Gateway server that will be resolved to the WPAD server name by the local name servers.
 - In the Destination CIDR field (optional), enter the CIDR mask value. If the Destination IP is in IPv4 format, enter 32. Enter 128 for an IPv6 Destination IP.
 - In the Destination Port field, enter **80**.
 - In the Redirected Destination IP field enter the same IP address you entered in the Destination IP field.
 - In the Redirected Destination Port field, enter **8083**.
 - In the User Protocol field (optional), select **dns**.

8. Click **Add**.

9. Use the arrow keys on the left side to move the new rule to the first line in the file.

10. Click **Apply**, and then click **Close**.

11. Click **Restart** on the Configure > My Proxy > Basic > General.

Configuring FTP clients in an explicit proxy environment

Help | Content Gateway | Version 8.1.x
When Content Gateway is configured to proxy FTP traffic (see *FTP, page 328*), FTP client applications, such as FileZilla or WS_FTP, should be configured to send FTP requests to the proxy. When so configured, the user works with the FTP client application as if no proxy were present.

To connect to an FTP server, 4 pieces of information are usually needed. These pieces of information are mapped as follows:

<table>
<thead>
<tr>
<th>From:</th>
<th>To:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP server hostname</td>
<td>FTP proxy hostname</td>
</tr>
<tr>
<td>FTP server port number</td>
<td>FTP proxy port number (default is 2121)</td>
</tr>
<tr>
<td>FTP server username</td>
<td>FTP_server_username@FTP_server_hostname</td>
</tr>
<tr>
<td></td>
<td>For example: anon@ftp.abc.com</td>
</tr>
<tr>
<td>FTP server password</td>
<td>FTP server password</td>
</tr>
</tbody>
</table>

Some FTP client applications have a configuration page for specifying FTP proxy information. Update those settings to point to the Content Gateway FTP proxy. See your FTP client application documentation.

Here is an example configuration using a recent version of FileZilla.

In the **FTP Proxy** area:

1. Set **FTP Proxy** to **Custom** and define USER and PASS as shown.
2. Set **Proxy host** to the Content Gateway FTP proxy hostname and port number.
3. Accept the settings by clicking **OK**.

The user then enters FTP connection information in the usual way, as if no proxy were present. For example:

Host: ftp.example.com
Username: anon
Password: 123abc

If the FTP client application is not configured, the user must enter FTP requests as shown below.

Host: Content Gateway proxy hostname
Username: anon@ftp.example.com
Password: 123abc
Port: 2121
The transparent proxy option enables Content Gateway to respond to client Internet requests without requiring users to reconfigure their browsers. It does this by redirecting the request flow to the proxy after the traffic has been intercepted, typically by a Layer 4 (L4) switch or router.

In a transparent proxy deployment:

1. The proxy intercepts client requests to origin servers via a switch or router. See *Transparent interception strategies*, page 49.
2. The Adaptive Redirection Module (ARM) changes the destination IP address of an incoming packet to the proxy’s IP address and the destination port to the proxy port, if different. (The ARM is always enabled.)
3. The proxy receives and begins processing the intercepted client requests. If a request is a cache hit, the proxy serves the requested object. If a request is a miss, the proxy retrieves the object from the origin server and serves it to the client.
4. On the way back to the client, the ARM changes the source IP address to the origin server IP address and the source port to the origin server port.

Important

For transparent proxy configurations with multiple interfaces or gateways, Content Gateway must have proper routes to clients and the Internet in the operating system’s routing table.

For HTTP, the proxy can identify problem clients and servers, and the ARM can disable interception for those clients and servers, passing their traffic directly to the origin server. You can also create ARM static bypass rules to exempt clients and
servers from being redirected to the proxy. See *Interception bypass*, page 70.

Related topics:
- *Transparent interception strategies*, page 49
- *Interception bypass*, page 70
- *Connection load shedding*, page 73
- *Reducing DNS lookups*, page 74
- *IP spoofing*, page 77
- *Support for IPv6*, page 82

The ARM

The Content Gateway ARM inspects incoming packets before the IP layer sees them and readdresses the packets to Content Gateway for processing.

The ARM can make two changes to an incoming packet’s address. It can change its destination IP address and its destination port. For example, the destination IP address of an HTTP packet is readdressed to the IP address of the proxy and the destination HTTP port is readdressed to the Content Gateway HTTP proxy port (usually port 8080).

On the way back to the client, the ARM changes the source IP address to the origin server IP address and the source port to the origin server port.

The ARM component consists of several files and a kernel module, which are installed during product installation. The installation program also creates redirection rules to readdress packets using the IP address of the proxy machine and default port assignments. The ARM is always active.

For the proxy to serve HTTP, HTTPS, FTP, or DNS requests transparently, you must check the redirection rules in the *ipnat.conf* file and edit them if necessary. If you are using WCCP for transparent interception, there must be a redirection rule for every port in every active service group. Rules for standard ports are included by default. To view and work with ARM redirection rules, follow these steps.

1. Log on to the Content Gateway manager and go to **Configure > Networking > ARM > General**.

 The **Network Address Translation (NAT)** section displays the redirection rules in the *ipnat.conf* file. Check the redirection rules and make any needed changes.

 a. To change a redirection rule, click **Edit File** to open the configuration file editor for the *ipnat.conf* file.
b. Select the rule you want to edit and modify the appropriate fields. Click Set and then click Apply to apply your changes. Click Close to exit the configuration file editor.

All fields are described in ARM, page 364.

2. Click Restart on Configure > My Proxy > Basic > General.

Transparent interception strategies

Websense Content Gateway supports the following transparent interception solutions:

- A Layer 4 switch. See Transparent interception with a Layer 4 switch, page 49.
- A router or switch that supports WCCP v2. Cisco IOS-based routers are the most common. See Transparent interception with WCCP v2 devices, page 50.
- Policy-based routing. See Transparent interception and multicast mode, page 66.
- Software routing. See Transparent interception with software-based routing, page 68.

Exactly how client requests reach the proxy depends on network topology. In a complex network, you must decide which clients are to be served transparently and make sure that network devices and the proxy are positioned to intercept their requests. Content Gateway, or routers or switches feeding Content Gateway, are often deployed at a major artery or aggregation pipe to the Internet.

To configure Content Gateway to serve only transparent traffic, see Configuring Content Gateway to serve only transparent requests, page 69.

Transparent interception with a Layer 4 switch
Layer 4 switches can redirect supported protocols to the proxy, while passing all other Internet traffic directly to its destination, as shown below for HTTP.

Layer 4 switches offer the following features, depending on the particular switch:

- A Layer 4 switch that can sense downed hosts on the network and redirect traffic adds reliability.
- If a single Layer 4 switch feeds several proxy servers, the switch handles load balancing among the Content Gateway nodes. Different switches might use different load-balancing methods, such as round-robin or hashing. If a node becomes unavailable, the switch redistributes the load. When the node returns to service, some switches return the node to its previous workload, so that the node cache need not be repopulated; this feature is called _cache affinity_.

Note

It is recommended that you do **not** enable Content Gateway virtual IP failover when a switch is providing load balancing in a cluster configuration.

Transparent interception with WCCP v2 devices

Help | Content Gateway | Version 8.1.x

Related topics:
- _WCCP load distribution_, page 53
- _Configuring WCCP v2 routers_, page 55
- _Enabling WCCP v2 in Content Gateway_, page 60
- _ARM bypass and WCCP_, page 53
Content Gateway supports transparent interception with WCCP v2-enabled routers and switches.

HTTP, HTTPS, FTP, and DNS protocols are supported. Default ARM redirection rules are included for HTTP, HTTPS, and FTP communicating on standard ports.

A list of WCCP v2 supported features follows the setup outline.

Important

The network clients, Content Gateway proxy servers, and destination Web servers (default gateway) must reside on separate subnets.

Following is a WCCP v2 setup outline.

1. Install and configure your WCCP v2 devices.
 - On each WCCP v2 device:
 - Configure the service groups.
 - Configure password security, if needed.
 - Configure multicast communication, if needed.

 See Configuring WCCP v2 routers, page 55.

2. Configure Content Gateway to work with your WCCP devices.
 - Define matching service groups.
 - In addition to network interface, protocols, ports, authentication (if used), and multicast communication (if used), also configure:
 - The IP addresses of the WCCP v2 devices.
 - The Packet Forward Method and Packet Return Method.
 - If Content Gateway is deployed in a cluster, assignment method load distribution, if desired.

 - Create ARM NAT rules for non-standard ports.

 See Enabling WCCP v2 in Content Gateway, page 60 and The ARM, page 48.

3. Validate the configuration with test traffic.

WCCP v2 supported features

Content Gateway supports the following WCCP v2 features:

- Multiple routers in a proxy cluster
- Multiple ports per service group
- Multiple service groups per protocol. Sometimes it is necessary or convenient to have different service groups for different WCCP devices. For example, for Cisco ASA firewall, different service groups are required for each WCCP device in the network.
- Dynamic load distribution in a cluster through assignment method HASH or MASK. See WCCP load distribution, page 53.
Packet Return Method and Packet Forward Method negotiation

- MD5 password security per service group
- Multicast mode

In a Content Gateway cluster, it is recommended that you **not** enable virtual IP failover in WCCP environments. WCCP v2 and the Content Gateway configuration handles node failures and restarts. (See *WCCP load distribution*, page 53 and *Virtual IP failover*, page 91.) However, if a Content Gateway cluster uses WCCP exclusively, virtual IP failover can be used if no user authentication features are used. Note that the WCCP assignment method - not virtual IP failover - is the recommended method for managing load distribution. If a Content Gateway cluster receives requests both explicitly and transparently (the networks must be separate; this type of deployment is not recommended), virtual IP failover can be used on the explicit proxy network segment.

Content Gateway also supports cache affinity. If a node becomes unavailable and then recovers, the node’s cache does not need to be repopulated.

How WCCP v2 interception works:

1. WCCP v2 devices send HTTP, HTTPS, FTP, and DNS traffic, per the configuration of the service group, to the proxy server or cluster of servers.
2. The ARM readdresses traffic. For example, HTTP traffic on port 80 is readdressed to Content Gateway port 8080.
3. The proxy processes the request as usual, sending the response back to the client.
4. The ARM readdresses the proxy port in the response header to port 80 (undoing the readdressing it did on the way to the proxy). As a result, the user sees the response as if it had been sent directly from the origin server.

ARM bypass and WCCP

If Content Gateway has an ARM bypass rule (discussed in *Interception bypass*, page 70), Content Gateway forwards particular client requests directly to the origin server, bypassing the proxy.

Bypassed requests are unchanged by the ARM; they retain their client source IP address.

With WCCP v2, you can exclude certain router interfaces from redirection. **Content Gateway ARM bypass rules work only if you exclude the router interface that Content Gateway is connected to from WCCP redirection.** You do this on the router by selecting the interface connected to Content Gateway and issuing the router configuration command `ip wccp redirect exclude in`. This causes the router to exclude traffic inbound on the specified interface from all redirection rules.

WCCP load distribution

The WCCP protocol provides the **assignment method** for dynamic symmetric and asymmetric load distribution in a cluster. WCCP detects node failures and performs redistribution based on the configuration communicated to it by Content Gateway.
Load distribution is configured in Content Gateway Manager and is pushed to the WCCP devices.

Load distribution is configured **per service group**.

For each service group:

- Participating cluster members must be registered to the service group. (The WCCP device makes no decisions about load balancing.)
- The HASH or MASK assignment method is selected. HASH is typically used with the GRE forward/return method, and MASK with the L2 forward/return method.

Important

MASK was developed specifically for the Cisco Catalyst series switches, and is one of the key characteristics that enable WCCP interception to be performed completely in hardware on these platforms. It should be used only with devices for which there is documented support.

- One or more **distribution attributes** are selected. Typically the destination IP address is used.
- If load is to be distributed to different cluster members in different proportions, a **weight** value is set on each cluster member. These values determine the proportion of requests each will receive relative to other members of the cluster. This option is only useful if the **Synchronize in the Cluster** option is disabled. See *Configuring service groups in the Content Gateway manager*, page 61.

Asymmetric load distribution using the **weight** value is helpful when:

- There are multiple Content Gateway servers with different performance capabilities, for example a V-Series V10000 G2 and a V10000 G3.
- The Internet traffic profile doesn’t lend itself to even distribution due to preferences for specific origin servers (and therefore destination IP addresses).

How dynamic redistribution works:

Dynamic redistribution is accomplished when the WCCP device detects that a cluster member is offline. It then automatically redistributes the load to the remaining cluster members based on the load distribution configuration. When a cluster member returns to service and is detected by the WCCP device, load distribution is, again, automatically adjusted based on the configuration.

For configuration steps, see *Configuring service groups in the Content Gateway manager*, page 61.
How the weight value supports asymmetric load distribution:

Important

Weight is only useful if the *Synchronize in the Cluster* option is *disabled*. See *Configuring service groups in the Content Gateway manager*, page 61.

The weight value is unique to each service group and node. The weight value does not propagate around the cluster and must be set individually on every node in the cluster.

The value of weight, relative to the settings on other cluster members, determines the proportion of traffic that WCCP directs to the node.

By default, weight is set to 0, which results in equal distribution to all cluster members.

To achieve asymmetric distribution, weight is set relative to other members of the cluster. For example, assume a cluster of 3 nodes:

<table>
<thead>
<tr>
<th>Node</th>
<th>Weight value</th>
<th>Load distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node1</td>
<td>50</td>
<td>50%</td>
</tr>
<tr>
<td>Node2</td>
<td>25</td>
<td>25%</td>
</tr>
<tr>
<td>Node3</td>
<td>25</td>
<td>25%</td>
</tr>
</tbody>
</table>

If Node1 goes offline, Node2 and Node3 will get an equal amount of traffic. If Node3 goes offline, Node1 will get two thirds of the traffic and Node2 will get one third of the traffic.

Because the weight value is relative to the settings on other cluster nodes, the same distribution as above can be achieved with weight values of 10, 5, 5. (The valid range of weight is 0-255.)

If weight is changed from its default value of 0, it should be configured on all nodes in the cluster.

Configuring WCCP v2 routers

It is strongly recommended that you consult the documentation and the manufacturer’s support site for information regarding configuration and performance of your WCCP v2 device.

Most devices should be configured to take best advantage of hardware-based redirection.

With Cisco devices, the most recent version of IOS is usually the best.

To prepare WCCP v2 devices for use with the proxy:
1. Configure one or more service groups for the protocols you intend to use. A service group can handle one or multiple protocols. See Configuring service groups on the WCCP device, page 56.

2. Configure the router to enable WCCP processing for these service groups. See Enabling WCCP processing for a service group, page 57.

3. Optionally, enable router security. Router security must also be enabled for the service group in Content Gateway. See Enabling WCCP v2 security on the router, page 59.

4. When you are done configuring the router, you must also configure and enable WCCP in the Content Gateway manager. See Enabling WCCP in the Content Gateway manager, page 61.

Configuring service groups on the WCCP device

WCCP uses service groups to specify the traffic that is redirected to Content Gateway (and other devices).

A service group can intercept:

- one or more protocols
- on one or more ports

Service groups are assigned a unique integer identifier (ID) from 0 to 255.

Service groups IDs are user defined; they do not have a default port or traffic type.

The following table illustrates a set of service group definitions that are often found in networks. If you are configuring for IP spoofing, see the table in IP spoofing, page 77, for common reverse service groups IDs.

<table>
<thead>
<tr>
<th>Service ID</th>
<th>Port</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
<td>HTTP</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>FTP</td>
</tr>
<tr>
<td>70</td>
<td>443</td>
<td>HTTPS (when HTTPS support is enabled)</td>
</tr>
</tbody>
</table>

Service groups must be configured on the router and in Content Gateway.

The best practice is to configure the router(s) first and Content Gateway second.
Follow the instructions in your router documentation for specifics, but in general:

1. To see what has been configured on the router for WCCP, enter:
   ```
   show running-config | include wccp
   ```
2. To enable WCCP v2, enter:
   ```
   ip wccp version 2
   ```
3. If you used another proxy cache with your router prior to Content Gateway, disable the service ID that was previously used. For example, if you have a Cisco router, disable the service ID `web-cache` by issuing this command:
   ```
   no ip wccp web-cache
   ```
4. Specify the service group IDs you will use with Content Gateway. For the specific commands to use, see your router documentation.
 You must configure each service group supported by the router individually. You cannot configure a router globally.

Enabling WCCP processing for a service group

For each WCCP v2 service group that you configure, you must enable WCCP processing.

WCCP v2 routers contain multiple network interfaces, including:

- one or more interfaces that receive inbound (ingress) client traffic
- one or more interfaces connected to Content Gateway
- an interface dedicated to outbound (egress) traffic that is aimed at the Internet

Following are some guidelines for enabling WCCP processing for a service group on a router. Consult the procedures in your router documentation for specifics.
1. Turn on the WCCP feature:
 \[\text{ip wccp <service group ID> password [0-7] <passwd>} \]

2. On the router or switch interface, enable redirection for incoming (ingress) packets or outgoing (egress) packets.

Note

Where your hardware and network topology support it, it is recommended that redirection be performed on the ingress interface (using the “redirect in” commands).

The following are examples. Be sure to substitute the service group IDs that you have established on your router(s).

First, select the interface to configure:

\[\text{interface <type> <number>} \]

Second, establish your redirection rules:

\[\text{ip wccp <service group ID> redirect in} \]

Examples for inbound redirection:

Run these commands for each protocol that you want to support, **but only on the interface(s) dedicated to inbound (ingress) traffic**.

For example, to turn on redirection of HTTP destination port traffic, enter:

\[\text{ip wccp 0 redirect in} \]

To turn on redirection of HTTPS destination port traffic:

\[\text{ip wccp 70 redirect in} \]

To turn on redirection of FTP destination port traffic enter:

\[\text{ip wccp 5 redirect in} \]

To turn on redirection of HTTP source port traffic, which is required for IP spoofing, enter:

\[\text{ip wccp 20 redirect in} \]

Examples for outbound (egress) redirection:

Run these commands for each protocol that you want to support, **but only on the interface(s) dedicated to outbound (egress) traffic**.

First, select the interface to configure:

\[\text{interface <type> <number>} \]

Second, establish your redirection rules:

\[\text{ip wccp <service group ID> redirect out} \]

For example, to turn on redirection for HTTP, enter:

\[\text{ip wccp 0 redirect out} \]

To turn on redirection for HTTPS:

\[\text{ip wccp 70 redirect out} \]

To turn on redirection for FTP enter:

\[\text{ip wccp 5 redirect out} \]
3. **IMPORTANT:** When ARM dynamic or static bypass is enabled, or IP spoofing is enabled, and redirection is on the outbound (egress) interface, exclude redirection of Content Gateway outbound packets on the router interface that handles Content Gateway’s egress traffic. See the illustration, below.

a. Select the interface that handles Content Gateway egress traffic:

   ```
   interface <type> <number>
   ```

b. Exclude Content Gateway outbound traffic on the interface from all redirection rules on the router:

   ```
   ip wccp redirect exclude in
   ```

 When ARM bypass occurs, or IP spoofing is enabled, the proxy sends traffic to the Internet with the original source IP address. The “redirect exclude in” command prevents the router from looping the traffic back to Content Gateway.

Disabling WCCP processing for a service group

Help | Content Gateway | Version 8.1.x

If you need to disable WCCP processing for any reason, issue this command to turn off the WCCP feature:

```
no ip wccp <service group ID> password [0-7] <passwd>
```

Enabling WCCP v2 security on the router

Help | Content Gateway | Version 8.1.x

If you are running WCCP v2, you can enable security on the Content Gateway node so that the proxy and your routers can authenticate each other. You must individually enable security for each service group that the router supports. You cannot configure a router globally as you would Content Gateway.
You enable the security option and provide the authentication password in the Content Gateway manager.

The authentication password you specify must match the authentication password configured on the router for each service group being intercepted. The following procedure provides an example of how to set an authentication password for different service groups.

1. Telnet to the router and switch to Enable mode.
2. At the prompt, enter the following command to configure the router from the terminal:

   ```
   configure terminal
   ```

3. If you defined a password when you enabled WCCP on the router, skip to step 4. Otherwise, enter the following command for each service group that the router intercepts:

   ```
   hostname(config)# ip wccp service_group password password
   ```

 where `hostname` is the host name of the router you are configuring, `service_group` is the service group ID (for example, 0 for HTTP), and `password` is the password you want to use to authenticate Content Gateway. This password must match the password you specify in the Content Gateway configuration for this service group.

4. Exit and save the router configuration.

Enabling WCCP v2 in Content Gateway

After you have configured your WCCP v2 routers, these steps remain:

1. **Enabling WCCP in the Content Gateway manager**
2. **Configuring service groups in the Content Gateway manager**
3. Restarting Content Gateway

Important
Before you restart Content Gateway, make sure that your configuration meets the following requirements:

- Cisco IOS devices are running a very recent version of IOS with all appropriate patches applied.
- WCCP routers are programmed with the correct service groups and other features.

Enabling WCCP in the Content Gateway manager

1. Go to **Configure > My Proxy > Basic > General**.
2. In the Networking section of the Features table, locate WCCP, click On, and then Apply. Do not restart Content Gateway.

Configuring service groups in the Content Gateway manager

Every WCCP service group that redirects traffic to a Content Gateway proxy must have a corresponding service group defined for it in the Content Gateway server or cluster.

To define service groups, go to **Configure > Networking > WCCP**.

- The Service Groups table displays the list of configured service groups and a subset of their configuration settings.
 - Entries are stored in the wccp.config file.
 - The Refresh button rereads wccp.config, refreshing the table.
 - To add, modify, delete, or reorder service groups, click Edit File.
- **Synchronize in the Cluster**: If Content Gateway is configured in a cluster, enable (default) or disable the Synchronize in the Cluster option. (The value of this option is always synchronized in the cluster.)
 - When this option is enabled, the WCCP configuration (stored in wccp.config) is synchronized in the cluster and configuration changes can be made on any node in the cluster.
 - When this option is disabled, the WCCP configuration is not synchronized in the cluster and changes to the WCCP configuration must be made individually on each node. A common use case for this is to control which service groups are enabled/disabled on each node, and/or to use proportional load distribution using weight.
 - If after being disabled this option is enabled, the configuration on the node on which the administrator enables the option is used to initially synchronize the cluster.
Caution: When Synchronize in the Cluster is disabled, you must visit each node in the cluster to examine and maintain your WCCP configuration. This can also make WCCP troubleshooting more difficult.

Configuring a service group (editing wccp.config)

1. On Configure > Networking > WCCP, click Edit File to open wccp.config in the editor.

 Defined service groups are summarized at the top of the page.

 Click an entry in the list to view its complete details, modify, or reposition it.

 When an entry is selected, the down and up arrows to the left of the list reposition the entry in the list.

 Click “X” to delete a selected entry.

2. **Service Group Information**

 a. **Service Group Status**: To enable a service group, select Enabled. A service group can be defined but not active.

 b. **Service Group Name**: Specify a unique service group name. The service group name is an aid to administration.

 c. **Service Group ID**: Specify a WCCP service group identification number from 0-255. This ID must match a corresponding service group ID configured on the router. See *Configuring service groups on the WCCP device*.

 d. **Protocol**: Specify the network protocol applicable to the service group, either TCP or UDP.

 e. **Ports**: Specify the ports that this service group will use. You can specify up to 8 ports in a comma-separated list.

 __Important__

 Every port in the service group must have a corresponding ARM NAT rule to redirect the traffic to Content Gateway. See *The ARM*.

 f. **Network Interface**: From the drop down list, select the network interface on the Content Gateway host system that this service group will use.

3. **Mode Negotiation**

 The **Packet Forward Method** determines how traffic is transmitted from the WCCP router to the proxy.

 The **Packet Return Method** specifies the method used to return traffic back to the WCCP router.

 Typically the router supports only one method.

 Typically, the forward and return methods match.

 a. If traffic is routed to the proxy by a Cisco ASA firewall, in the **Special Device Profile** drop down box select **ASA Firewall**. When this option is selected, GRE is automatically selected for both **Packet Forward Method** and **Packet Return Method**. These settings cannot be changed.
b. If traffic is routed to the proxy by a router or switch, select the **Packet Forward Method** and **Packet Return Method** that matches the capabilities and position of your router or switch.

If Content Gateway is configured with a Forward/Return method that the router does not support, the proxy negotiates the method supported by the router.

Packet Forward Method: Select L2 or GRE.

If L2 is selected, L2 is automatically selected as the return method (GRE is not an option).

Important

Selecting L2 requires that the router or switch be Layer 2-adjacent (in the same subnet) as Content Gateway.

If GRE is selected, for each router in the service group a unique Content Gateway tunnel endpoint IP address must be specified in the **WCCP Routers** section (see the **Router Information** step, below).

Packet Return Method: Select L2 or GRE.

Important

GRE cannot be used with WCCP multicast mode.

Important

If you change the forward/return method configuration while there is an active connection with the WCCP device, in order to re-negotiated the method you must force the current connection to terminate. Typically, this means turning off the service group on the WCCP device for 60 seconds. See the documentation for your WCCP device.

4. **Advanced Settings**

 a. **Assignment Method**: Specify the parameters used to distribute intercepted traffic among multiple nodes in a cluster. For a description of the WCCP load distribution feature, see *WCCP load distribution*, page 53.

 HASH applies a hash operation to the selected distribution attributes.
 - With HASH, more than one distribution attribute can be selected.
 - The result of the hash operation determines the cluster member that receives the traffic.

 MASK applies a mask operation to the selected distribution attribute.
 - Only one distribution attribute can be selected, typically the destination IP address.
 - The result of the mask operation determines the cluster member that receives the traffic.
The following distribution attributes can be selected:

- Destination IP address
- Destination Port
- Source IP address
- Source Port

The MASK value is applied up to 6 significant bits (in a cluster, a total of 64 buckets are created). See your WCCP documentation for more information about assignment method HASH and MASK operations. Use the value recommended in the manufacturer’s documentation for your device.

b. **Weight**: Only useful when **Synchronize in the Cluster** is disabled.

For proportional load distribution, specify a value from 0-255. The value determines the proportional distribution of load among servers in a cluster.

All cluster members have a value of 0 by default, which results in a balanced distribution of traffic. If weight is set to 1 or higher, the value guides proportional distribution among the nodes. For example, if there are 3 nodes in a cluster and Proxy1 has a weight of 20, Proxy2 has a weight of 10, and Proxy3 has a weight of 10, Proxy1 will get one half of the traffic, Proxy2 will get one-quarter of the traffic, and Proxy3 will get one-quarter of the traffic.

Important

When the value of **weight** is greater than 0 on any member of the cluster, any member of the cluster with a weight of 0 receives **no** traffic. If you plan to use weight, be sure to set a weight on every member of the cluster.

Note

Weight is only useful when **Synchronize in the Cluster** is disabled.

For more information about load distribution, see *WCCP load distribution*, page 53.

c. **Reverse Service Group ID**: For IP spoofing. Allows you to specify a reserve service group ID.

When IP spoofing is enabled, you must define a reverse service group for each HTTP and HTTPS forward service group.

Note

Only HTTP and HTTPS are supported for IP Spoofing.
Using the specified ID, Content Gateway creates a reverse service group that is a mirror of the forward service group. For example, if the forward service group has assignment method based on destination IP address, the reverse service has an assignment method based on the source IP address.

Note

IP spoofing is not supported with service groups that use a hashing assignment method with both destination and source attributes. If IP spoofing is enabled on such a service group, an alarm is raised and IP spoofing is disabled.

5. **Router Information**

Note

It may take up to a minute for the router to report that a new proxy server has joined a service group.

- **Security**: To use optional WCCP authentication, select **Enabled** and enter the same password used for service group authentication on the router. See *Enabling WCCP v2 security on the router*, page 59.

- **Multicast**: To run in multicast mode, select **Enabled** and enter the multicast IP address. The multicast IP address must match the multicast IP address specified on the router. See *Transparent interception and multicast mode*, page 66.

Important

GRE packet Forward/Return method cannot be used with multicast mode.

- **WCCP Routers**: Specify up to 10 WCCP Router IP Addresses. These routers must be configured with a corresponding service group.

 If GRE is selected for **Packet Forward Method**, also specify a unique Local GRE Tunnel Endpoint IP address for each router (not required for ASA firewall), and optionally, a GRE Tunnel Next Hop Router IP Address.

 The Local GRE Tunnel Endpoint IP address is the Content Gateway tunnel endpoint for the associated Router IP Address.

 The Local GRE Tunnel Endpoint IP Address:
 - Must be unique and not assigned to any device
 - Must be a routable IP address
 - Should reside on the same subnet as the proxy. If it is not, you must define a route for it.
 - Is not intended to be a client-facing proxy IP address
 - Is bound to the physical interface specified for the service group (on a V-Series appliance, eth0 = P1; eth1 = P2)
When GRE Packet Return Method is configured and Content Gateway does not have a route back to the WCCP router, specify a GRE Tunnel Next Hop Router IP Address. The IP address must be in IPv4 format.

You can use “ping” to test connectivity to the router.

- From Content Gateway, ping each router defined in the service group (in the Router IP Address field).
- If ping doesn’t return a response, you need to define a GRE Tunnel Next Hop to that router. Intervening routers must have a route to the WCCP router, or a next hop.

Note

WCCP routers that have multiple interfaces assign the Router ID to the interface with the highest numeric value IP address. Content Gateway must be able to connect to the router ID to negotiate the method. To ensure connectivity and that the router ID doesn’t change unexpectedly, it is a best practice to make the router loopback address the highest IP address. This also ensures that traffic and statistics reported on the Monitor > Networking > WCCP page are reported against a known router ID.

6. Click **Add** to add a new entry, or click **Set** to save changes to the selected entry.
7. Click **Apply** and then **Close** to close the editor. Navigating away from the page before clicking **Apply** results in the loss of all changes.
8. Restart the proxy to cause the changes to take effect. Go to Configure > My Proxy > Basic > General and click **Restart**.

Note

To check that the router is sending traffic to the proxy, examine the statistics in the Content Gateway manager Monitor pane. For example, check that the Objects Served statistic in the My Proxy > Summary section increases.

Transparent interception and multicast mode

To configure Content Gateway to run in multicast mode, you must enable multicast mode and specify the multicast IP address in the Content Gateway manager.

Important

GRE packet Forward/Return method cannot be used with multicast mode.
In addition, you must set the multicast address on your routers for each service group being intercepted (HTTP, FTP, DNS, and SOCKS). The following procedure provides an example of how to set the multicast address for different service groups on a WCCP v2-enabled router.

1. Telnet to the router and switch to Enable mode.
2. At the prompt, enter the following command to configure the router from the terminal:
   ```
   configure terminal
   ```
3. At the prompt, enter the following command for each service group that the router intercepts:
   ```
   hostname(config)# ip wccp service_group group-address multicast_address
   ```
 where `hostname` is the host name of the router you are configuring, `service_group` is the service group ID (for example, 0 for HTTP), and `multicast_address` is the IP multicast address.
4. At the prompt, enter the following command to configure the network interface:
   ```
   interface interface_name
   ```
 where `interface_name` is the network interface on the router that is being intercepted and redirected.
5. At the prompt, enter the following command for each service group that the router intercepts:
   ```
   hostname(config-if)# ip wccp service_group group-listen
   ```
6. Exit and save the router configuration.

Transparent interception with policy-based routing

Instead of the WCCP protocol, you can use the policy routing capabilities of a router to send traffic to Content Gateway. WCCP or a Layer 4 switch are generally preferable to this configuration because policy-based routing has a performance impact on the router, and policy-based routing does not support load balancing or heartbeat messaging.

- All client Internet traffic is sent to a router that feeds Content Gateway.
- The router sends port 80 (HTTP) traffic to the proxy and sends the remaining traffic to the next hop router.
- The ARM translates intercepted requests into Content Gateway requests.
- Translated requests are sent to the proxy.
- Web objects to be served transparently are readdressed by the ARM on the return path to the client, so that the documents appear to have come from the origin server.
A Content Gateway cluster with virtual IP failover adds reliability; if one node fails, another node can take up its transparency requests. See *Virtual IP failover*, page 91.

Transparent interception with software-based routing

You can deploy Content Gateway without adding routers or switches by using routing software on the Content Gateway node. In this case, Content Gateway is a software router and directs all traffic through the proxy machine. This solution can be useful in low-traffic situations, where the performance cost of using the proxy machine as a router is not high.

On Linux systems, you can use the **routed** and **gated** daemons as a software-based routing solution. The **routed** daemon is a bundled part of all normal Linux distributions. The **gated** daemon is an extensible commercial software package from the Merit GateD Consortium.

When you use routing software with Content Gateway:

- All Internet traffic goes through Content Gateway from machines behind it in the network.
- The routing software routes all non-transparent requests to the Internet; it routes port 80 HTTP requests to the proxy cache.
- The ARM translates intercepted requests into proxy requests.
- Translated requests are sent to the proxy.
Web objects to be served transparently are readdressed by the ARM on the return path to the client, so that the objects appear to have come from the origin server.

Note

Although Content Gateway machines can function as routers, they are not expressly designed to be routers. For reliability, you can use a Content Gateway cluster with the virtual IP failover option. If one node fails, another cluster node takes over. See *Virtual IP failover, page 91.* The Content Gateway cluster failover mechanism is similar to the Hot Standby Router Protocol (HSRP).

Configuring Content Gateway to serve only transparent requests

You can configure Content Gateway to serve only transparent requests and prevent explicit proxy requests from being served in the following ways:

- You can control client access to Content Gateway by specifying ranges of IP addresses that are allowed to connect to the proxy. If Content Gateway receives a request from an IP address not listed in a specified range, it discards the request. See *Controlling client access to the proxy, page 177.*

- If you do not know the ranges of client IP addresses allowed to access Content Gateway, you can add rules to the `ipnat.conf` file (`Configure > Networking > ARM > General`) so that only requests that have been redirected by your Layer 4 switch or WCCP router reach the proxy port.

To make a transparent-only Content Gateway server, add rules in the `ipnat.conf` file before the normal redirect service rule to redirect explicit proxy traffic to a port on which no service is listening. For example, if you want Content Gateway to ignore explicit HTTP requests, add rules above the normal HTTP redirect rule in the `ipnat.conf` file as shown below (where `ipaddress` is the IP address of your Content Gateway system and `port_number` is a port number on which no service is listening):

```
rdr hme0 ipaddress port 80 -> ipaddress port port_number tcp
rdr hme0 ipaddress port 8080 -> ipaddress port port_number tcp
rdr hme0 0.0.0.0/0 port 80 -> ipaddress port 8080 tcp
```

Add equivalent rules to the `ipnat.conf` file for each protocol service port or separate network interface to be served. After you make changes to the `ipnat.conf` file, you must restart the proxy.

- If your Content Gateway system has multiple network interfaces or if you configure the Content Gateway operating system to use virtual IP addresses, you must give Content Gateway two IP addresses. One address must be the real address that the proxy uses to communicate with origin servers and the other a private IP address (for example 10.0.0.1) for WCCP or switch redirection. After you configure the IP addresses, you must add the following variables to the end of the `records.config` file. Replace `private_ipaddress` with the private IP address used.
for WCCP or switch redirection and real_ipaddress with the IP address the proxy uses to communicate with origin servers.

```
LOCAL proxy.local.incoming_ip_to_bind STRING private_ipaddress
LOCAL proxy.local.outgoing_ip_to_bind STRING real_ipaddress
```

Interception bypass

A small number of clients and servers do not work correctly with Web proxies. Some reasons include:

- Client software irregularities (customized, non-commercial browsers).
- Server software irregularities.
- Applications that send non-HTTP traffic over HTTP ports as a way of defeating security restrictions.
- Server IP address authentication (the origin server limits access to a few client IP addresses, but the Content Gateway IP address is different, so it cannot get access). This is not in frequent use because many ISPs dynamically allocate client IP dial-up addresses, and more secure cryptographic protocols are now more often used.

Web proxies are very common in corporate and Internet use, so interoperability problems are rare. However, Content Gateway contains an adaptive learning module that recognizes interoperability problems caused by transparent proxy processing and automatically bypasses the traffic around the proxy server without operator intervention.

Content Gateway follows 2 types of bypass rules:

- **Dynamic** (also called adaptive) bypass rules are generated dynamically if you configure Content Gateway to bypass the cache when it detects non-HTTP traffic on port 80 or when it encounters certain HTTP errors. See *Dynamic bypass rules*, page 71.
- **Static** bypass rules must be manually configured in the `bypass.config` file. See *Static bypass rules*, page 72.

Note

Do not confuse ARM bypass rules with client access control lists. Bypass rules are created in response to interoperability problems. Client access control is simply restriction of the client IP addresses that can access the proxy, as described in *Controlling client access to the proxy*, page 177.
Dynamic bypass rules

When configured to do so, the proxy watches for protocol interoperability errors. As it detects errors, it configures the ARM to bypass the proxy for those clients and servers causing the errors.

In this way, the small number of clients or servers that do not operate correctly through proxies are auto-detected and routed around the proxy caching server so that they can continue to function (but without caching).

You can configure the proxy to dynamically bypass itself for any of the following errors:

<table>
<thead>
<tr>
<th>Error code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>Non-HTTP traffic on port 80</td>
</tr>
<tr>
<td>400</td>
<td>Bad Request</td>
</tr>
<tr>
<td>401</td>
<td>Unauthorized</td>
</tr>
<tr>
<td>403</td>
<td>Forbidden (authentication failed)</td>
</tr>
<tr>
<td>405</td>
<td>Method Not Allowed</td>
</tr>
<tr>
<td>406</td>
<td>Not Acceptable (access)</td>
</tr>
<tr>
<td>408</td>
<td>Request Timeout</td>
</tr>
<tr>
<td>500</td>
<td>Internal Server Error</td>
</tr>
</tbody>
</table>

For example, when Content Gateway is configured to bypass on authentication failure (403 Forbidden), if any request to an origin server returns a 403 error, Content Gateway generates a destination bypass rule for the origin server’s IP address. All requests to that origin server are bypassed until you restart the proxy.

In another example, if the ARM detects that a client is sending a non-HTTP request on port 80 to a particular origin server, Content Gateway generates a source/destination rule. All requests from that particular client to the origin server are bypassed; requests from other clients are not bypassed.

Bypass rules that are generated dynamically are purged after a Content Gateway restart. If you want to preserve dynamically generated rules, you can save a snapshot of the current set of bypass rules. See Viewing the current set of bypass rules, page 73.

To prevent Content Gateway from bypassing certain IP addresses dynamically, you can set dynamic deny bypass rules in the bypass.config file. Deny bypass rules can
prevent the proxy from bypassing itself. For information about setting dynamic deny bypass rules, see *bypass.config, page 397.*

Setting dynamic bypass rules

By default, Content Gateway is not configured to bypass itself when it encounters HTTP errors or non-HTTP traffic on port 80. You must enable dynamic bypass rules by setting the appropriate options.

1. Navigate to **Configure > Networking > ARM > Dynamic Bypass.**
2. Enable the **Dynamic Bypass** option.
3. In the **Behavior** section, select the dynamic bypass rules you want to use.
4. Click **Apply.**
5. Click **Restart** on the **Configure > My Proxy > Basic > General** tab.

Viewing dynamic bypass statistics

Content Gateway tallies bypassed requests for each type of dynamic bypass trigger. For example, Content Gateway counts all requests that are bypassed in response to a 401 error.

- Navigate to **Monitor > Networking > ARM.**

The statistics are displayed in the **HTTP Bypass Statistics** section of the table.

Static bypass rules

You can configure bypass rules to direct requests from certain clients or to particular origin servers around the proxy. Unlike dynamic bypass rules that are purged when you restart the proxy, these static bypass rules are saved in a configuration file.

You can configure 3 types of static bypass rules:

- **Source bypass,** in which Content Gateway bypasses a particular source IP address or range of IP addresses. For example, you can use this solution to bypass clients who want to opt out of a caching solution.
- **Destination bypass,** in which Content Gateway bypasses a particular destination IP address or range of IP addresses. For example, these could be origin servers that use IP authentication based on the client’s real IP address. Destination bypass rules prevent Content Gateway from caching an entire site. You will experience hit rate impacts if the site you bypass is popular.
- **Source/destination pair bypass,** in which Content Gateway bypasses requests that originate from the specified source to the specified destination. For example, you
Transparent Proxy and ARM

could route around specific client-server pairs that experience broken IP authentication or out of band HTTP traffic problems.

Source/destination bypass rules might be preferable to destination rules because they block a destination server only for those particular users that experience problems.

To configure static bypass rules, edit the bypass.config file (See bypass.config, page 397).

Viewing the current set of bypass rules

The ARM has a supporting utility called print_bypass that allows you to view the current dynamic and static bypass rules.

To view all current dynamic and static bypass rules:

1. Log on to a Content Gateway node and then change directory to the Content Gateway bin directory (/opt/WCG/bin).
2. Enter the following command at the prompt and press Return:

 ./print_bypass

 All current static and dynamic bypass rules are displayed on screen. The rules are sorted by IP address. You can direct the output of print_bypass to a file and save it.

Connection load shedding

The load shedding feature prevents client request overloads. When there are more client connections than the specified limit, the ARM forwards incoming requests directly to the origin server. The default client connection limit is 1 million connections.

1. Navigate to Configure > Networking > Connection Management > Load Shedding.
2. In the Maximum Connections field, specify the maximum number of client connections allowed before the ARM starts forwarding requests directly to the origin server.
3. Click Apply.
Reducing DNS lookups

If you are running Content Gateway in transparent proxy mode, you can enable the **Always Query Destination** option to reduce the number of DNS lookups and improve response time. When enabled, the Always Query Destination option configures the proxy to always obtain the original destination IP address of incoming requests from the ARM. Content Gateway then uses that IP address to determine the origin server instead of doing a DNS lookup on the hostname of the request. Because the client already performed a DNS lookup, Content Gateway does not have to.

When Always Query Destination is enabled, the value defined for the variable `proxy.config.arm.use_hostname_for_wisp_and_reporting` determines whether IP address or hostname is captured for reporting purposes.

<table>
<thead>
<tr>
<th>Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is recommended that you do not enable the Always Query Destination option if Content Gateway is running in both explicit and transparent proxy mode. In explicit proxy mode, the client does not perform a DNS lookup on the hostname of the origin server, so the proxy must perform a DNS lookup. Also, the category lookup is performed based on the IP address, which is not always as accurate as a URL-based lookup. In addition, do not enable the Always Query Destination option if you want domain names, rather than IP addresses, in TRITON AP-WEB transaction logs.</td>
</tr>
</tbody>
</table>

To enable Always Query Destination:

1. Open the `records.config` file in the Content Gateway `config` directory (`/opt/WCG/config`).
2. Edit the following variable:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.arm.always_query_dest</code></td>
<td>Set to 0 to disable the Always Query Destination option. Domain names are captured. Set to 1 to enable the Always Query Destination option. IP addresses are captured; domain names are not.</td>
</tr>
</tbody>
</table>

3. Save and close the file.
4. To apply the changes, run the following command from the Content Gateway bin directory:

 `content_line -x`
Explicit and transparent proxy deployments can be used with other optional features.

IP spoofing

Ordinarily, when Content Gateway proxies requests for clients it communicates with origin servers using its own IP address in place of the client’s IP address. This is the standard operation of forward proxies.

IP spoofing configures the proxy to use:

- The IP address of the client when communicating with the origin server (basic IP spoofing)

Or

- A specified IP address when communicating with the origin server (*Range-based IP spoofing*)

IP spoofing is sometimes used to support upstream activities that require the client IP address or a specific IP address. It also results in origin servers seeing the client or specified IP address instead of the proxy IP address (although the proxy IP address can be a specified IP address; more below).

IP spoofing features and restrictions:

- IP spoofing is supported for HTTP and HTTPS traffic only.
- When IP spoofing is enabled, it is applied to both HTTP and HTTPS. It cannot be configured for only one protocol.
- HTTPS traffic is spoofed whether SSL support is enabled or not.
Additional Proxy Configuration

- IP spoofing relies on the ARM.
- In transparent proxy deployments using WCCP and IP spoofing, with GRE or L2 mode negotiation, neither HASH nor MASK are supported on the Source Port or Source Port/Source IP address.
- IP spoofing is not supported with edge devices such as a Cisco ASA or PIX firewall. When this is attempted, requests made by Content Gateway using the client IP address are looped back to Content Gateway.
- IP spoofing requires all IP addresses in the same routing path use the same format. That is, all IP addresses must be either IPv6 or IPv4. A combination of IPv6 and IPv4 addresses is not supported.

Warning
Deploying IP spoofing requires precise control of the routing paths on your network, overriding the normal routing process for traffic running on TCP port 80 and 443. When configured with either transparent or explicit proxy, return traffic must be routed back to the proxy.

For assistance, please contact your network equipment vendor or Websense Technical Support.

With IP spoofing enabled, traditional debugging tools such as **traceroute** and **ping** have limited utility.

Important
For a discussion of how the proxy kernel routing table impacts transparent proxy deployment, see the Solution Center article titled, [Web sites in the Static or Dynamic bypass list fail to connect](#).

Range-based IP spoofing

Range-based IP spoofing supports groupings of clients (IP addresses and IP address ranges) that are mapped to specified IP addresses.

Among other uses, range-based IP spoofing facilitates:

- The delivery of web-hosted services when the identification is by source IP address. For example, to receive a web-hosted service, an organization might be required to identify membership to the service via a known IP address.
- IP address-based authentication with an external service when a unique IP address represents a group of users.
- A way to configure traditional IP spoofing for some clients (source IP addresses that don’t match any group are spoofed with their own IP address), range-based IP
spoofing for some clients, and standard proxy IP address substitution for some clients. The latter is done by creating a group that specifies the proxy IP address.

Important

Range-based IP Spoofing is not supported on many older versions of Cisco IOS firmware. To avoid problems, update your Cisco device to the latest firmware.

IP Spoofing is supported for IPv6. However, range-based IP Spoofing is not supported for IPv6.

IP spoofing and the flow of traffic

The following describes the flow of HTTP and HTTPS traffic when IP spoofing is used with WCCP. Policy-based routing can be implemented to achieve the same results. The numbers in the diagram correspond to the actions described in the numbered list.

1. A client request arrives at a routed port or Switched Virtual Interface (SVI) looking for traffic with a destination port of HTTP (80) or HTTPS (443).
2. The switch redirects the client request to Content Gateway.
 If needed, the proxy creates a connection to the origin server using the client IP address or specified IP address (range-based IP spoofing).
3. The request is sent to the origin server through the switch, NAT and/or firewall.
4. When the origin server response is returned, the IP packet has the substituted IP address as the destination (client or specified IP address).
5. The origin server response arrives at a routed port or Switched Virtual Interface (SVI) looking for traffic with a source port of HTTP (80) or HTTPS (443). See the note below.
6. The switch redirects the origin server response to the proxy, completing the proxy-to-origin server TCP connection.
7. A proxy response to the client is generated and returned to the client on the proxy-to-client TCP connection.

Note

When IP spoofing is enabled, the proxy advertises a reverse service group for each enabled WCCP service. The reverse service group must be applied along the return path of the proxy.

WCCP service group IDs are user defined and must be programmed on the WCCP device(s) and in Content Gateway (see Configuring service groups on the WCCP device and Configuring service groups in the Content Gateway manager).

Following is a set of suggested definitions.

<table>
<thead>
<tr>
<th>Service ID</th>
<th>Port</th>
<th>Traffic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>destination port 80</td>
<td>HTTP</td>
</tr>
<tr>
<td>20</td>
<td>source port 80</td>
<td>HTTP</td>
</tr>
<tr>
<td>70</td>
<td>destination port 443</td>
<td>HTTPS (HTTPS support must be enabled)</td>
</tr>
<tr>
<td>90</td>
<td>source port 443</td>
<td>HTTPS</td>
</tr>
</tbody>
</table>

Policy-based routing (PBR) uses access control lists (ACL) to identify and redirect flows. In a PBR deployment, all of the configuration is done on the router and there is no corresponding Content Gateway configuration. PBR deployments have to redirect traffic returning from origin servers from port 80 and 443 to Content Gateway.

Configuring IP spoofing

Basic IP spoofing

From Content Gateway manager:

1. Go to Configure > Networking > ARM > General.
2. Under IP Spoofing, select Enabled.
3. Click Apply.
5. Configure your network to ensure Web traffic will be redirected back to the proxy.
Contact your network equipment vendor or Websense Technical Support for any needed assistance.

Warning

The ARM is a critical component of Content Gateway that should never be disabled. If it is disabled while IP spoofing is enabled, client requests receive a “Cannot display Web page” error and an error message is recorded in /var/log/messages.

For information about configuring WCCP routers, see *Configuring WCCP v2 routers*, page 55.

Range-based IP spoofing

Important

IP Spoofing is supported for IPv6. However, range-based IP Spoofing is not supported for IPv6.

- Client IP address ranges and their corresponding spoofed IP address are specified in a table.
- The table is traversed top-down. The first match is applied.
- Requests from clients that do not match an IP address in the table are spoofed with their own IP address (basic IP spoofing).
- To create an entry that causes a set of IP addresses to appear to be coming from the proxy (as in ordinary forward proxy request handling), specify the desired client IP address range and then, in the *Spoofed IP Address* field, specify the proxy’s Internet-facing IP address.
- It is recommended that you create the smallest list that meets your needs. The list is traversed for every connection request. A very large list could contribute to latency. Use the performance charts (Monitor > Performance) to monitor proxy performance.

To create the range-based IP spoofing table:

1. Go to Configure > Networking > ARM > General.
2. Under IP Spoofing, select Enabled. Basic IP spoofing must be enabled to enable range-based IP spoofing.
3. Under Range Based IP Spoofing, select Enabled.
4. In the Client IP Addresses field, enter a comma separated list of individual IP addresses and/or IP address ranges.
 - In a range, the first IP address is separated from last with a hyphen. For example: 10.100.100.0-10.100.100.254
 - CIDR notation is allowed. Do not use spaces.
 - The Client IP Address list supports a maximum of:
Additional Proxy Configuration

- 64 IPv4 addresses
- 32 IPv4 address ranges

5. In the **Specified IP Address** field, enter a single IP address.

6. Click **Apply** to add the entry to the table.

Warning: If any of the formatting is invalid, all of the data in that row is cleared.

7. To add a new row to the table, click **Add Row**.

8. To put new entries into effect, click **Apply** and then restart Content Gateway.

9. Configure your network to ensure Web traffic will be redirected back to the proxy.

 Contact your network equipment vendor or Websense Technical Support for any needed assistance.

To remove an entry from the IP spoofing table:

1. Clear all the values in the row to be removed.

2. Click **Apply**.

3. To put the changes into effect, restart Content Gateway.

Support for IPv6

TRITON Enterprise, including the Content Gateway proxy component, provides support for IPv6.

Important

In transparent proxy deployments, support requires WCCP v2.01. If you use a Cisco router, it must be version 15.4(1) or later.

Content Gateway support for IPv6 includes:

- IPv6 on dual IP stack Ethernet interfaces
- Support for these protocols: HTTP, HTTPS, FTP, DNS
- IPv6 traffic to the Internet, clients, and PAC file servers
- IPv6 virtual IP addresses (vaddrs.config)
- Authentication rules by client IPv6 address ranges
- Client IPv6 addresses and address ranges to allow or restrict access to the proxy (ip_allow.config)
- Client IPv6 addresses and address ranges to allow or restrict access to the Content Gateway manager (mgmt_allow.config)
- IPv6 Primary Destination value and Source IP values in proxy filtering rules (filter.config), cache rules (cache.config), and parent proxy servers in a chain (parent.config)
- IPv6 addresses in the SSL Incident List
- SNMP traps and counters for IPv6 data

Limits and restrictions:
- IPv6-only internal networks are not supported
- IPv4 must be used to communicate among all TRITON components, including other members of a Content Gateway cluster (multicast address)
- With all user authentication, the Domain Controller(s) must be reachable on an IPv4 address
- The parent proxy in a chain cannot be IPv6
- Range-based IP Spoofing is not available for IPv6.
- SOCKS proxy is not supported
- IPv6 support is not available for FTP passive mode with the transparent proxy.
- IPv6 only clients do not display a block page correctly. The user is blocked from the site as expected but will receive a browser error rather than a block page. Dual-stack IPv6 clients receive the normal block page.

Warning
When the operating system is Red Hat Enterprise Linux 6, update 3, or CentOS 6, update 3, do not specify an IPv6 nameserver in `/etc/resolv.conf`. If an entry is included, Content Gateway will reset every time it attempts to start. If your deployment requires an IPv6 nameserver, upgrade your operating system to Red Hat Enterprise Linux 6, update 4, or CentOS 6, update 4.

IPv6 proxy statistics:
Content Gateway tracks IPv6 traffic. View statistics on the **Monitor > Networking > System** page.

Effect of IPv6 on Event logs:
When IPv6 is enabled, Event log entries are normalized to IPv6 format. For example, “10.10.41.200” is logged as “::ffff:10.10.41.200”.

To filter on a client at “10.10.41.200” in a custom log, requires the following filter:

```xml
<LogFilter>
  <Name = "IPv6_Test_Machine"/>
  <Condition = "chi MATCH ::ffff:10.10.41.200"/>
  <Action = "ACCEPT"/>
</LogFilter>
```
IPv6 configuration summary

IPv6 support is disabled by default.

If Content Gateway is deployed on a Websense Appliance, first enable IPv6 in the Appliance Manager on the **Configuration > Network Interfaces > IPv6** tab.

IPv6 is enabled in the Content Gateway manager in the **Network** section of the **Configure > My Proxy > Basic** page. When it is enabled, support is enabled for all functional areas as enumerated in the preceding section.

In any field that accepts an IPv6 address, the address can be entered in any format that conforms to the standard. For example:

- Leading zeros within a 16-bit value may be omitted
- One group of consecutive zeros may be replaced with a double colon

When IPv6 is disabled, IPv6 entry fields are hidden from view and IPv6 values are deleted from configuration files.

When the **DNS Resolver** is used, go to the **Configure > Network > DNS Resolver** page to set an IPv4 or IPv6 preference. IPv4 is the default.
Clusters

Related topics:
- Changing clustering configuration, page 86
- Adding nodes to a cluster, page 89
- Deleting nodes from a cluster, page 91
- Virtual IP failover, page 91

Websense Content Gateway scales from a single node to a cluster of 2 or more nodes, with a maximum recommended limit of 16. This allows you to quickly increase capacity and improve system performance and reliability.

- Content Gateway detects the addition and deletion of nodes in the cluster and can detect when a node is down.
- You can add or delete a node from a cluster at any time.
- When you remove a node from the cluster, Content Gateway removes all references to the missing node.
- Restarting a node in the cluster causes all nodes in the cluster to restart.
- When the Virtual IP failover feature is enabled, the live nodes in a cluster can assume a failed node’s traffic.
- Nodes in a cluster automatically share configuration information.

Note
Filtering Service and Policy Service IP addresses are not propagated around the cluster.

In transparent proxy deployments with WCCP, the service group Enabled/Disabled state and Weight settings are not propagated. See Transparent interception with WCCP v2 devices, page 50.

When SSL support is enabled, the Dynamic Incident List is not propagated around the cluster.
Clusters

Content Gateway uses a proprietary protocol for clustering, which is multicast for node discovery and heartbeat, and unicast for all data exchange within the cluster.

Important

It is recommended that a dedicated network interface be used for Content Gateway cluster communication, except when the host is a V-Series appliance, in which case the P1 (eth0) interface is recommended.

Important

In a proxy hierarchy, the nodes in the cluster cannot be a mixture of HTTP parents and children.

Management clustering

In management clustering mode you can administer all Content Gateway nodes at the same time because cluster nodes share configuration information.

Note

The number of nodes in a cluster can be 2 or more.

For assistance with scaling your deployment, contact your Websense account representative.

- Content Gateway uses a multicast management protocol to maintain a single system image of all nodes in the cluster.
- Information about cluster membership, configuration, and exceptions is shared across all nodes.
- The `content_manager` process propagates configuration changes to cluster nodes.
- When the HTTPS option is enabled (SSL support), its settings also propagate around the cluster, except for the Dynamic Incident List.

Changing clustering configuration

Clustering is usually configured when you install the proxy. You can, however, configure clustering afterward, or at any time, in the Content Gateway manager.
1. In the Content Gateway manager, go to **Configure > My Proxy > Basic > Clustering**.

2. In the **Cluster Type** area, select the clustering mode:
 - Select **Management Clustering** to include this proxy in a cluster.
 - Select **Single Node** if this node is not part of a cluster.

3. In the **Interface** area, enter the name of the network interface. This is the interface used by Content Gateway to communicate with other nodes in the cluster, for example: eth1.
 It is recommended that you use a dedicated secondary interface.

 Node configuration information is multicast, in plain text, to other Content Gateway nodes on the same subnet. Therefore, Websense recommends that clients be located on a separate subnet from Content Gateway nodes (multicast communications for clustering are not routed).

 On V-Series appliances, P1 (eth0) is the recommended interface. However, you may also use P2 (eth1) if you want to isolate cluster management traffic.
4. In the **Cluster Multicast Group Address** area, enter the multicast group address that all members of the cluster share. The default is 224.0.1.37.

Warning

Ensure that the multicast IP address does not conflict with the same address used by any other application or service.

If there is a conflict and the Content Gateway node is allowed to restart, it will fail to initialize the interface and the Content Gateway instance will shut down. You can verify the condition by examining `/var/log/messages` and looking for a message similar to:

```
[LocalManager::initCCom] Unable to find network interface eth2.#011 Exiting
```

To correct the problem, identify a unique multicast IP address that will work for all members of the cluster and:

If Content Gateway is on an appliance:

- Log on to the appliance manager, go to **Administration > Toolbox**, and open the **Command Line Utility**.
- Select the **Websense Content Gateway Module** and then the command `'content-line -s'`.
- Specify the **Variable Name** `proxy.config.cluster.mc_group_addr` and give **Value** the multicast IP address.
- Check each member of the cluster to ensure that they are all using the same multicast IP address.
- Restart the node.

If Content Gateway is installed on a separate server:

- Log on to the Linux host and go to `/opt/WCG/config`.
- Edit (vi) `records.config`, find `proxy.config.cluster.mc_group_addr` and assign it the value of the multicast IP address.
- Check each member of the cluster to ensure that they are all using the same multicast IP address.
- Restart the node.

5. Click **Apply**.
6. Click **Restart** on **Configure > My Proxy > Basic > General**.

Important

Content Gateway does not apply the clustering mode change to all of the nodes in the cluster. You must change the clustering mode on each node individually.

Adding nodes to a cluster

Content Gateway detects new Content Gateway nodes on your network and adds them to the cluster, propagating the latest configuration information to the newcomer. This provides a convenient way to bootstrap new machines.

To connect a node to a Content Gateway cluster, you need only install Content Gateway software on the new node, making sure during the process that the cluster name and port assignments are the same as those of the existing cluster. In this way, Content Gateway automatically recognizes the new node.

Important

The nodes in a cluster must be homogeneous; each node must be on the same hardware platform, each must be on the same operating system version, and Content Gateway must be installed in the same directory (/opt/WCG).

1. Install the appropriate hardware and connect it to your network.
2. Install the Content Gateway software using the appropriate procedure for installing a cluster node. See the [TRITON AP-WEB Installation Instructions](#).
3. During the installation procedure, make sure that the following is true:
 - The cluster name that you assign to the new node is the same as the cluster name for the existing nodes.
 - The port assignments for the new node are the same as the port assignments used by the other nodes.
 - You have added multicast addresses and multicast route settings.

To add an existing Content Gateway installation to the cluster:

1. In the Content Gateway manager, go to **Configure > My Proxy > Basic > General** and set **Proxy Name** to the name of the cluster.
2. Go to **Configure > My Proxy > Basic > Clustering**.
3. Set **Interface** to the interface used by the cluster. All members must use the same interface.

4. Set the **Multicast Group Address** to the address being used by the cluster.

5. In the **Type** area, select **Management Clustering**.

6. Click **Apply**.

7. Click **Restart** on **Configure > My Proxy > Basic > General**.

You can also add a node by editing variable values in the `records.config` file of the node to be added.

1. On the node you want to add to the cluster, open the `records.config` file located in `/opt/WCG/config`.

2. Edit the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| `proxy.local.cluster.type` | Specify the clustering mode:
2 = management mode
3 = no clustering |
| `proxy.config.proxy_name` | Specify the name of the Content Gateway cluster. All nodes in a cluster must use the same name. |
| `proxy.config.cluster.mc_group_addr` | Specify the multicast address for cluster communications. All nodes in a cluster must use the same multicast address. |
| `proxy.config.cluster.rsport` | Specify the reliable service port. The reliable service port is used to send data between the nodes in the cluster. All nodes in a cluster must use the same reliable service port. The default value is 8087. |
| `proxy.config.cluster.mcport` | Specify the multicast port. The multicast port is used for node identification. All nodes in a cluster must use the same multicast port. The default port is 8088. |
| `proxy.config.cluster.ethernet_interface` | Specify the network interface for cluster traffic. All nodes in a cluster must use the same network interface. |

3. Save and close the file.
4. Restart Content Gateway (/opt/WCG/WCGAdmin restart).

Deleting nodes from a cluster

Help | Content Gateway | Version 8.1.x

On the node you want to remove from the cluster:

1. Go to Configure > My Proxy > Basic > Clustering.
2. In the Cluster Type area, select Single Node.
3. Click Apply.
4. If you are permanently removing the node from the cluster, it is a best practice to change the proxy name to a name other than the cluster name.
 Go to Configure > My Proxy > Basic > General and change the Proxy Name to the system hostname or another meaningful value.
5. Restart the proxy.

Virtual IP failover

Help | Content Gateway | Version 8.1.x

Through the virtual IP failover feature, Content Gateway maintains a pool of virtual IP addresses that it assigns to the nodes in the cluster as necessary. These addresses are virtual only in the sense that they are not tied to a specific machine; Content Gateway can assign them to any of its nodes. To the outside world, these virtual IP addresses are the addresses of Content Gateway servers.

Virtual IP failover assures that if a node in the cluster fails, other nodes can assume the failed node’s responsibilities. Content Gateway handles virtual IP failover in the following ways:

- The content_manager process maintains cluster communication. Nodes automatically exchange statistics and configuration information through multicast communication. If multicast heartbeats are not received from one of the cluster nodes, the other nodes recognize it as unavailable.
- The content_manager process reassigns the IP addresses of the failed node to the remaining operational nodes within approximately 30 seconds, so that service can continue without interruption.
- The IP addresses are assigned to new network interfaces, and the new assignment is broadcast to the local network. The IP address reassignment is done through a process called ARP rebinding.
What are virtual IP addresses?

Virtual IP addresses are IP addresses that are not tethered to particular machines. Thus, they can rotate among nodes in a Content Gateway cluster.

It is common for a single machine to represent multiple IP addresses on the same subnet. This machine would have a primary or real IP address bound to its interface card and also serve many more virtual addresses.

You can set up your user base to use a DNS round-robin pointing at virtual IP addresses, as opposed to using the real IP addresses of the Content Gateway machines.

Because virtual IP addresses are not bound to machines, a Content Gateway cluster can take addresses from inactive nodes and distribute those addresses among the remaining live nodes.

Using a proprietary management protocol, Content Gateway nodes communicate their status with their peers. If a node fails, its peers notice the failure and negotiate which of the remaining nodes will mask the fault by taking over the failed node’s virtual interface.

Enabling and disabling virtual IP addressing

1. Navigate to Configure > My Proxy > Basic > General.
2. Under the Networking section in the Features table, select On or Off for Virtual IP to enable or disable Virtual IP addressing.
3. Click Apply.

Adding and editing virtual IP addresses

Virtual IP addresses must be pre-reserved, like all IP addresses, before they can be assigned to Content Gateway.

Warning
Incorrect IP addressing can disable your system. Make sure you understand how virtual IP addresses work before changing them.
1. Go to Configure > Networking > Virtual IP.
 The Virtual IP Addresses area displays the virtual IP addresses managed by Content Gateway.

 ![Note]
 The Virtual IP button is displayed only if you have enabled the Virtual IP option in the Features table on Configure > My Proxy > Basic > General.

2. Click Edit File to add new or edit existing virtual IP addresses.
3. To edit a virtual IP address, select it from the table at the top of the page, edit the fields provided, and then click Set.
 To delete the selected IP address, click Clear Fields.
 To add a virtual IP address, specify the virtual IP address, the Ethernet interface, and the Subinterface in the fields provided, and then click Add.
4. Click Apply, and then Close.
Hierarchical Caching

Websense Content Gateway can participate in HTTP cache hierarchies, page 95, in which requests not fulfilled in one cache can be routed to other regional caches, taking advantage of the contents and proximity of nearby caches.

A cache hierarchy consists of levels of caches that communicate with each other. Content Gateway supports several types of cache hierarchies. All cache hierarchies recognize the concept of parent and child. A parent cache is a cache higher up in the hierarchy, to which the proxy can forward requests. A child cache is a cache for which the proxy is a parent.

HTTP cache hierarchies

In an HTTP cache hierarchy, if a Content Gateway node cannot find a requested object in its cache, it can search a parent cache—which itself can search other caches—before resorting to retrieving the object from the origin server.

You can configure a Content Gateway node to use one or more HTTP parent caches, so that if one parent is unavailable, another parent can service requests. This is called
parent failover and is described in *Parent failover*, page 96.

Note
If you do not want all requests to go to the parent cache, you can configure the proxy to route certain requests directly to the origin server (for example, requests that contain specific URLs) by setting parent proxy rules in the `parent.config` configuration file (described in *parent.config*, page 418).

Note
If the request is a cache miss on the parent, the parent retrieves the content from the origin server (or from another cache, depending on the parent’s configuration). The parent caches the content and then sends a copy to the proxy (its child), where it is cached and served to the client.

Parent failover

When you configure the proxy to use more than one parent cache, the proxy detects when a parent is not available and sends missed requests to another parent cache. If you specify more than two parent caches, the order in which the parent caches are queried depends upon the parent proxy rules configured in the parent configuration file described in *parent.config*, page 418. By default, the parent caches are queried in the order in which they are listed in the configuration file.

Configuring Content Gateway to use an HTTP parent cache

1. On the **Configure > Content Routing > Hierarchies > Parenting** page, enable **Parent Proxy**.
2. Click **Edit File** to open the configuration file editor for the `parent.config` file.
3. Enter information in the fields provided, and then click **Add**. All the fields are described in *Hierarchies*, page 330.
4. Click **Apply**, and then click **Close**.
5. On the **Parenting** tab, click **Apply** to save your configuration.

Important
Perform this procedure on the child proxy. Do not make any changes on the parent.
The cache consists of a high-speed object database called the **object store**. The object store indexes objects according to URLs and associated headers, enabling Websense Content Gateway to store, retrieve, and serve Web pages and parts of Web pages, providing optimum bandwidth savings. Using object management, the object store can cache alternate versions of the same object, varying on language or encoding type, and can store small and large documents, minimizing wasted space. When the cache is full, Content Gateway removes stale data.

Fault tolerance: Content Gateway can tolerate disk failures on cache disks. If a disk drive fails five successive I/O operations, Content Gateway marks the disk as down, removes the drive from the cache, and sends an alarm message to the Content Gateway manager, indicating which disk failed. Normal cache operation continues on the remaining cache disks. If all cache disks fail, Content Gateway goes into proxy-only mode.

You can perform the following cache configuration tasks:

- Change the total amount of disk space allocated to the cache. See *Changing cache capacity*, page 100.
- Partition the cache by reserving cache disk space for specific protocols and origin servers and domains. See *Partitioning the cache*, page 102.
- Specify a size limit for objects allows in the cache. See *Configuring cache object size limit*, page 103.
- Delete all data in the cache. See *Clearing the cache*, page 104.
- Change the size of the RAM cache. See *Changing the size of the RAM cache*, page 104.

RAM cache

Content Gateway maintains a small RAM cache of popular objects. This RAM cache serves the most popular objects as fast as possible and reduces load on disks, especially during temporary traffic peaks. You can configure the RAM cache size. See *Changing the size of the RAM cache*, page 104.
Configuring the Cache

Changing cache capacity

The maximum aggregate disk cache size is limited to 147 GB. This size makes best use of system resources, while also providing an excellent end-user experience.

The minimum disk cache size is 2 GB.

Related topics:
- Querying cache size, page 100
- Increasing cache capacity, page 100
- Reducing cache capacity, page 101

Querying cache size

To view the configured aggregate cache size, open the Content Gateway manager and go to Monitor > Subsystems > Cache. The cache size is displayed, in bytes, in the Current Value column of the Cache Size field.

Alternatively, display the cache size with the following command, executed from the Content Gateway bin directory (/opt/WCG/bin).

```
content_line -r proxy.process.cache.bytes_total
```

Increasing cache capacity

To increase the total disk space allocated to the cache on existing disks, or to add new disks to a Content Gateway node:

2. Add hardware, if necessary.
 a. Set up the raw device and modify the permissions. For example:
      ```
mknod /etc/udev/devices/raw c 162 0
chmod 600 /etc/udev/devices/raw
```
 b. Identify the physical device name and note the size in bytes (used later). For example:
      ```
fdisk -l | grep "^Disk"
```
      ```
Disk /dev/cciss/c0d1: 146.7 GB, 146778685440 bytes
```
c. For each real disk, create a node, change the owner of the node, and map that raw node to a physical disk. Note that the final argument increments by 1 for each disk added.

To create a node:

```
mknod /etc/udev/devices/raw_c0d1 c 162 1
```

You can change the device name to the name that is returned from the `fdisk -l` command in step b.

To change the owner:

```
chown Websense /etc/udev/devices/raw_c0d1
```

The owner is the installation user (default is Websense). Use the device name used in the mknod statement.

To map the raw node to a physical disk:

```
/usr/bin/raw /etc/udev/devices/raw_c0d1 /dev/cciss/c0d1
```

Use the device name used in the mknod statement.

d. Add the same `/usr/bin/raw` commands to the `/etc/init.d/content_gateway` file to make the changes effective on reboot. For example, at line 6 add:

```
... case "$1" in
   'start')
      /usr/bin/raw /etc/udev/devices/raw_c0d1 /dev/cciss/c0d1
```

3. Edit the `storage.config` file in the Content Gateway config directory (`/opt/WCG/config`) to increase the amount of disk space allocated to the cache on existing disks or add the new disk devices. See `storage.config`, page 494.

4. Restart Content Gateway.

Reducing cache capacity

You can reduce the total amount of disk space allocated to the cache on an existing disk or remove disks from a Content Gateway node.

1. Stop Content Gateway.

2. Remove hardware, if necessary.

3. Edit the `storage.config` file to reduce the amount of disk space allocated to the cache on existing disks or to delete the reference to the hardware you are removing. See `storage.config`, page 494.

4. If you remove a disk, you must edit the `/etc/rc.d/init.d/content_gateway` file to remove the raw disk binding for the disk.

5. Restart Content Gateway.

Important

In the `storage.config` file, a formatted or raw disk must be at least 2 GB.
Partitioning the cache

You can manage your cache space more efficiently and restrict disk usage by creating cache partitions of different sizes for specific protocols. You can further configure these partitions to store data from specific origin servers and domains.

Important

The partition configuration must be the same on all nodes in a cluster.

HTTP is the only protocol supported.

Making changes to partition sizes and protocols

After you have configured your cache partitions based on protocol, you can make changes to the configuration at any time. Before making changes, note the following:

- You must stop Content Gateway before you change the cache partition size and protocol assignment.
- When you increase the size of a partition, the contents of the partition are **not** deleted. However, when you reduce the size of a partition, the contents of the partition **are** deleted.
- When you change the partition number, the partition is deleted and then re-created, even if the size and protocol type remain the same.
- When you add new disks to your Content Gateway node, the partition sizes specified in percentages increase proportionately.
- A lot of changes to the partition sizes might result in disk fragmentation, which affects performance and hit rate. It is recommended that you clear the cache (see *Clearing the cache, page 104*) before making many changes to cache partition sizes.

Partitioning the cache according to origin server or domain

After you have partitioned the cache according to size and protocol, you can assign the partitions you created to specific origin servers and domains.

You can assign a partition to a single origin server or multiple origin servers. However, if a partition is assigned to multiple origin servers, there is no guarantee on the space available in the partition for each origin server. Content is stored in the partition according to popularity.
In addition to assigning partitions to specific origin servers and domains, you must assign a generic partition to store content from all origin servers and domains that are not listed. This generic partition is also used if the partitions for a particular origin server or domain become corrupt.

Important
If you do not assign a generic partition, Content Gateway runs in proxy-only mode.

Note
You do not need to stop Content Gateway before you assign partitions to particular hosts or domains. However, this type of configuration can cause a spike in memory usage and is time consuming. It is recommended that you configure partition assignment during periods of low traffic.

You can partition the cache according to host name and domain in the Content Gateway manager.

In the Content Gateway manager:

1. Configure the cache partitions according to size and protocol, as described in `partition.config`, page 421.
 You should create a separate partition based on protocol (HTTP only) for each host and domain, and an additional generic partition to use for content that does not belong to these origin servers or domains. For example, if you want to separate content from two different origin servers, you must have at least three separate partitions: one HTTP-based partition for each origin server and a generic partition for all other origin servers not listed (the partitions do not have to be the same size).

2. On the **Configure** tab, click **Subsystems**, and then click **Cache**.

3. Click the **Hosting** tab and in the **Cache Hosting** area, click **Edit File** to open the configuration file editor for the `hosting.config` file.

4. Enter information in the fields provided, and then click **Add**. All the fields are described in **Cache**, page 356.

5. Click **Apply**, and then click **Close**.

Configuring cache object size limit

By default, Content Gateway allows objects of any size in the cache. You can change the default behavior and specify a size limit for objects in the cache.
Configuring the Cache

1. Select **Configure > Subsystems > Cache > General**.
2. In the **Maximum Object Size** field, enter the maximum size allowed (in bytes) for objects in the cache. Enter 0 (zero) if you do not want to have a size limit.
3. Click **Apply**.

When an object exceeds the size limit, the following message is entered in the system log file.

WARNING: Maximum document size exceeded

Clearing the cache

When you clear the cache, you remove all data from the entire cache, which includes the data in the host database. Clear the cache before performing certain cache configuration tasks, such as partitioning.

Note

You cannot clear the cache when Content Gateway is running.

1. Stop Content Gateway. See *Starting and stopping Content Gateway on the Command Line*, page 19.
2. Enter the following command to clear the cache:

   ```
   content_gateway -Cclear
   ```

Warning

The **clear** command deletes all data in the object store and the host database. Content Gateway does **not** prompt you to confirm the deletion.

3. Restart Content Gateway.

Changing the size of the RAM cache

Content Gateway provides a dedicated RAM cache for fast retrieval of popular small objects. The default RAM cache size is calculated based on the number and size of the
Configuring the Cache

cache partitions you have configured. You can increase the RAM cache size for better cache hit performance.

Warning
If you increase the size of the RAM cache and observe a decrease in Content Gateway performance (such as increased latencies), the operating system might require more memory for network resources. Return the RAM cache size to its previous value.

Note
If you have partitioned your cache according to protocol or hosts, the size of the RAM cache for each partition is proportional to the size of that partition.

1. Select **Configure > Subsystems > Cache > General**.
2. In the **Ram Cache Size** field, enter the amount of space (in megabytes) you want to allocate to the RAM cache. Although the user interface will accept larger values, **do not exceed 512 MB**. The default size is 104857600 (100 MB).

Note
A value of “-1” directs Content Gateway to automatically size the RAM cache to be approximately 1 MB per 1 GB of disk cache.

3. Click **Apply**.
4. Click **Restart** on **Configure > My Proxy > Basic > General**.
Typically, clients send DNS requests to a DNS server to resolve host names. However, DNS servers are frequently overloaded or not located close to the client; therefore DNS lookups can be slow and can be a bottleneck to fulfilling requests.

The DNS proxy caching option allows Content Gateway to resolve DNS requests on behalf of clients. This option off-loads remote DNS servers and reduces response times for DNS lookups.

Important
You can use the DNS proxy caching option only with a layer 4 switch or a Cisco router running WCCP v2.

The following overview illustrates how Content Gateway serves a DNS request.

1. A client sends a DNS request. The request is intercepted by a router or L4 switch that is configured to redirect all DNS traffic on port 53 to Content Gateway.
2. The ARM examines the DNS packet. If the DNS request is **type A** (answer), the ARM forwards the request to Content Gateway. The ARM forwards all DNS requests that are not **type A** to the DNS server.
3. For **type A** requests, Content Gateway checks its DNS cache to see if it has the host name to IP address mapping for the DNS request. If the mapping is in the DNS cache, Content Gateway sends the IP address to the client. If the mapping is not in the cache, Content Gateway contacts the DNS server to resolve the host name. When Content Gateway receives the response from the DNS server, it caches the host name to IP address mapping and sends the IP address to the client. If round-robin is used, Content Gateway sends the entire list of IP address mappings to the client and the round-robin order is strictly followed.

Note
If the host name to IP address mapping is not in the DNS cache, Content Gateway contacts the DNS server specified in the `/etc/resolv.conf` file. Only the first entry in `resolv.conf` is used. This might not be the same DNS server for which the DNS request was originally intended.
The DNS cache is held in memory and backed up on disk. Content Gateway updates the data on disk every 60 seconds. The TTL (time-to-live) is strictly followed with every host name to IP address mapping.

Configuring DNS proxy caching

To configure Content Gateway as a DNS proxy cache:

- Add a remap rule in the `ipnat.conf` file.
- Enable the DNS proxy option and specify the port that Content Gateway will use for DNS proxy traffic.
- Configure your layer 4 switch or WCCP router to send DNS traffic on port 53 to Content Gateway.

Important

You can use the DNS proxy caching option only with a layer 4 switch or a Cisco router running WCCP v2.

In the Content Gateway manager:

1. Go to **Configure > Networking > ARM > General**.
2. In the **Network Address Translation (NAT)** section, click **Edit File** to open the file editor for the `ipnat.conf` file.
3. Enter information in the fields provided:
 - In the **Ethernet Interface** field, enter the Content Gateway ethernet interface to which client DNS requests are routed. For example, eth0.
 - In the **Connection Type** drop-down list, select **udp**.
 - In the **Destination IP** field, enter **0.0.0.0** to accept DNS requests from all clients.
 - In the **Destination CIDR** field (optional), enter the CIDR mask value. If you have specified 0.0.0.0 in the Destination IP field, enter ‘0’ here.
 - In the **Destination Port** field, enter the port on which DNS requests are sent to Content Gateway. The default port is 53.
 - In the **Redirected Destination IP** field, enter the IP address of Content Gateway.
 - In the **Redirected Destination Port** field, enter the port that Content Gateway uses to communicate with the DNS server. The default port is 5353.
 - In the **User Protocol** drop-down list, select **dns**.
4. Click **Add**, then click **Apply**, and then click **Close**. Postpone the prompted restart until step 8.
5. Go to **My Proxy > Basic** and in the **Features** table, enable **DNS Proxy** in the **Networking** section and click **Apply**. Postpone the prompted restart until step 8.

6. Go to **Networking > DNS Proxy**.

7. In the **DNS Proxy Port** field, enter the DNS proxy port. The default port is 5353.

8. Click **Apply** and restart Content Gateway.

9. Configure your layer 4 switch or WCCP v2 router to send DNS traffic to the Content Gateway DNS port (default: 53).
Configuring the System

Websense Content Gateway provides several options for configuring the system:

- **Content Gateway manager**, page 111
- **Command-line interface**, page 112
- **Configuration files**, page 113
- **Saving and restoring configurations**, page 114

Many configuration changes require a restart Content Gateway. When such a change is made in Content Gateway manager, a message informs you that a restart is needed. When such a change is made on the command line or in a configuration file there is no notification. It is recommended that you consult Content Gateway documentation to confirm whether a restart is needed.

Content Gateway manager

The Content Gateway manager provides a Web-based user interface for configuring the Content Gateway web proxy.

Note

Certain options can be changed only by editing configuration variables either in the `records.config` file or from the command-line interface. See **Command-line interface**, page 112 and **Configuration files**, page 113.

For instructions on logging on to the Content Gateway manager, see *Accessing the Content Gateway manager*, page 11.

Using Configure mode

By default, the Content Gateway manager opens in Monitor mode.
Click the **Configure** tab to display the Configure mode buttons.

In Configure mode, the Content Gateway manager displays a series of buttons. Each button represents a group of configuration options.

All of the options available in **Configure** mode are described in *Configuration Options*.

Command-line interface

As an alternative to the Content Gateway manager, you can use the command-line interface to view and change your Content Gateway configuration.

1. Log on to a Content Gateway node as root, and then change directory (`cd`) to the Content Gateway **bin** directory (/opt/WCG/bin).
2. To view a configuration setting, enter the following command:
   ```
   ./content_line -r var
   ``
   where `var` is the variable associated with the configuration option (for a list of the variables, refer to *Configuration variables, page 423*).
3. To change the value of a configuration setting, enter the following command:
   ```
 ./content_line -s var -v value
   ```
where \texttt{var} is the variable associated with the configuration option and \texttt{value} is the value you want to use.

For example, to change the FTP inactivity timeout option to 200 seconds, enter the following command at the prompt and press Return:

\begin{verbatim}
./content_line -s
proxy.config.ftp.control_connection_timeout -v 200
\end{verbatim}

### Configuration files

You can change some Content Gateway configuration options by editing specific variables in the \texttt{records.config} file, located in /opt/WCG/config. Open the file in a text editor (such as \texttt{vi} or \texttt{emacs}) and change the value of the variable.

\begin{note}
After you modify the \texttt{records.config} file, Content Gateway must reread the configuration files. From the Content Gateway \texttt{bin} directory (/opt/WCG/bin), enter the command:

\begin{verbatim}
./content_line -x
\end{verbatim}

In some cases, you have to restart the proxy to apply the changes.
\end{note}
The figure below shows a sample portion of the `records.config` file:

The variable name

The variable type: an integer (INT), a string (STRING), or a floating point (FLOAT)

Content Gateway provides other configuration files that are used to configure specific features. All the configuration files are described in *Configuration Files*, page 391.

**Saving and restoring configurations**

The configuration snapshot feature lets you save all current configuration settings and restore them if needed. Content Gateway can store configuration snapshots on the node where they are taken, on an FTP server, and on portable media. Content Gateway restores a configuration snapshot on all the nodes in the cluster.

**Note**

It is recommended that you take a configuration snapshot before performing system maintenance or attempting to tune system performance. Taking a configuration snapshot takes only a few seconds.

This section describes how to perform the following tasks:

- Take a snapshot of the current configuration. See *Taking configuration snapshots*, page 115.
Configure the System

- Restore previously taken configuration snapshots. See *Restoring configuration snapshots, page 115.*
- Delete configuration snapshots stored on the Content Gateway node. See *Deleting configuration snapshots, page 116.*

**Taking configuration snapshots**

You can save all of the current configuration settings on your Content Gateway system using a facility in the Content Gateway manager.

**To take a configuration snapshot and save it on the local system**

1. Go to Configure > Snapshots > File System.
2. The Change Snapshot Directory field displays the name of the directory where Content Gateway saves configuration snapshots. The default location is the Content Gateway config/snapshots directory. To change the directory, enter the full path in the Change Snapshot Directory field. If you enter a relative path, Content Gateway assumes that the directory is located in its config directory.
3. In the Save Snapshot field, type the name you want to use for the current configuration.
4. Click Apply.

**To take a configuration snapshot and save it on an FTP server**

1. Go to Configure > Snapshots > FTP Server.
2. In the fields provided, enter the FTP server name, the login and password, and the remote directory where the FTP server stores configuration snapshots.
3. Click Apply.
   After you have successfully logged on to the FTP server, the FTP Server page displays additional fields.
4. In the Save Snapshot to FTP Server field, enter the name of the configuration snapshot you want to take.
5. Click Apply.

**Restoring configuration snapshots**

If you are running a cluster of Content Gateway servers, the configuration is restored to all the nodes in the cluster.

**To restore a configuration snapshot stored on the local node**

1. Go to the Configure > Snapshots > File System tab.
2. From the **Restore > Delete Snapshot** drop-down list, select the configuration snapshot that you want to restore.

3. Click the **Restore Snapshot from “directory_name” Directory** box.

4. Click **Apply**.
   The Content Gateway system or cluster uses the restored configuration.

### To restore a configuration snapshot from an FTP server

1. Go to **Configure > Snapshots > FTP Server**.

2. In the fields provided, enter the FTP server name, the login and password, and the remote directory in which the FTP server stores configuration snapshots.

3. Click **Apply**.
   After you have successfully logged on to the FTP server, the **FTP Server** tab displays additional fields.

4. In the **Restore Snapshot** drop-down list, select the configuration snapshot that you want to restore.

5. Click **Apply**.
   The Content Gateway system or cluster uses the restored configuration.

### Deleting configuration snapshots

1. Go to **Configure > Snapshots > File System**.

2. From the **Restore > Delete a Snapshot** drop-down list, select the configuration snapshot you want to delete.

3. Click the **Delete Snapshot from “directory_name” directory** box.

4. Click **Apply**.
   The configuration snapshot is deleted.
Websense Content Gateway provides the following tools to monitor system performance and analyze network traffic:

- Statistics that show Content Gateway performance and network traffic information. See *Viewing statistics*, page 117. The command-line interface provides an alternative method of viewing this information. See *Viewing statistics from the command line*, page 121.

- Alarms that signal detected failure conditions. See *Working with alarms*, page 121.

- Performance graphs that show historical Content Gateway performance and network traffic information. See *Using Performance graphs*, page 123.

- Reports for SSL traffic, including the status of certificate authorities and incidents. See *Creating SSL-related reports*, page 124.

### Viewing statistics

Use the Content Gateway manager to collect and interpret statistics about Content Gateway performance and Web traffic. View statistics using Monitor mode.

For instructions on logging on to the Content Gateway manager, see *Accessing the Content Gateway manager*, page 11.

### Using Monitor mode

In Monitor mode, the Content Gateway manager displays a series of buttons on the left of the display. Click a button to view its statistics.

All statistics displayed in Monitor mode are described in detail in *Statistics*, page 269.

#### My Proxy

Click *My Proxy* to see statistics about Content Gateway.
Click **Summary** to see a concise view of your Content Gateway system. The top portion of the page displays information about the features of your TRITON AP-WEB subscription, including the expiration date. The middle portion of the page displays information about the scanning engines in use and their associated data files. The bottom portion of the page contains statistics on proxy nodes, displaying all cluster nodes by name and tracking essential statistics for each node. If you want to display detailed information about a particular node in a cluster, click the node’s name in the Summary table, and then click one of the other buttons on the **Monitor** tab.

Click **Node** to see information about the selected node. You can see if the node is active or inactive, the date and time that the `content_gateway` process was started, cache performance information (document hit rate, bandwidth savings, and what percentage of the cache is currently free), the number of client and server connections currently open, and the number of transfers currently in progress. You can also see name resolution information, such as the host database hit rate and the number of DNS lookups per second.

**Note**

If the node is part of a cluster, two sets of statistics are shown: information about the single node and information showing an average value for all nodes in the cluster. Click the name of a statistic to display the information in graphical format.

Click **Graphs** to view the same statistics displayed on the **Node** page (cache performance, current connections and transfers, network, and name resolution) in graphical format. You can display multiple statistics in one graph.

To display a particular statistic in graphical format, click the box next to the name of the graph, and then click **Graph**. To display multiple statistics in one graph, click the box next to the name of each graph you want to display, and then click **Graph**.

**Important**

The graph is displayed in your browser using a Java applet. You should have the latest version of Java installed on your PC (at least version 1.7). To validate your access to Content Gateway statistics, you will be prompted for Content Gateway logon credentials.

Click **Alarms** to view the alarms that Content Gateway has signaled. See *Working with alarms*, page 121.

Select **Diagnostics** to run automatic or manual diagnostic tests to help determine the cause for a problem you might be having. Run the diagnostics listed on the **Automatic** tab to test network connections. Enter parameters for the diagnostic commands provided on the **Manual** tab to execute tests typically run from the command line.
Protocols

The Protocols button provides information about HTTP and FTP transactions.

- Click **HTTP** to see information about HTTP transactions and speeds (such as cache misses, cache hits, connection errors, aborted transactions) and client and server connection information. Also see information about FTP requests from HTTP clients, such as the number of open FTP server connections, the number of successful and unsuccessful PASV and PORT connections, and the number of cache lookups, hits, and misses.

- Click **FTP** to see information about FTP requests from FTP clients.

---

Note

The FTP button appears only if you have enabled FTP processing in the Features table under the **Configure > My Proxy > Basic** tab.

Security

The Security button provides information about proxy authentication, and SOCKS server connections:

- Click **LDAP** to see the number of LDAP cache hits and misses, and the number of LDAP authentication server errors and unsuccessful authentication attempts. The LDAP button appears only if you have enabled the LDAP option in the Features table on the **Configure > My Proxy > Basic > General** tab.

- Click **NTLM** to see the number of NTLM cache hits and misses, and the number of NTLM authentication server errors and unsuccessful authentication attempts. The NTLM button appears only if you have enabled the NTLM option in the Features table on the **Configure > My Proxy > Basic > General** tab.

- Click **Integrated Windows Authentication** (IWA) to see the negotiated requests counters, the NTLM request counters and the Basic authentication request counters. The IWA tab appears only if you have enabled the IWA option in the Features table on the **Configure > My Proxy > Basic > General** tab.

- Click **SOCKS** to see the number of successful and unsuccessful connections to the SOCKS server and the number of connections currently in progress. The SOCKS button appears only if you have enabled the SOCKS option in the Features table on the **Configure > My Proxy > Basic > General** tab.

Subsystems

The Subsystems button provides information about the proxy cache, clusters, and event logging:

- Click **Cache** to see information about the proxy cache. See how much space in the cache is currently being used, the total size of the cache in gigabytes, the total size of the RAM cache in bytes, the number of RAM cache hits and misses, and the number of cache lookups, object reads, writes, updates, and removes.
Monitoring Traffic

- Click **Clustering** to see the number of nodes in the cluster, the total number of cluster operations, the number of bytes read and written to all the nodes in the cluster, and the current number of open connections in the cluster.
- Click **Logging** to see the number of log files currently open, the amount of space currently being used for log files, the number of access events and error events logged, and the number of access events skipped.

Networking

The Networking button provides information about system network configuration, the ARM, WCCP routers, DNS proxy, domain name resolution, and virtual IP addressing.

- Click **System** to see system network configuration, including the host name assigned to the proxy machine and the default gateway, search domain, and DNS servers that the proxy machine uses.
- Click **ARM** to see information about Network Address Translation and dynamic bypass.
- Click **WCCP** to see WCCP v2 fragmentation statistics and the configuration of every WCCP service group enabled on the Content Gateway node. The WCCP tab appears only if you have enabled WCCP in the Features table on the Configure > My Proxy > Basic > General tab.
- Click **DNS Proxy** to see the total number of DNS requests served by Content Gateway, and the number of cache hits and misses. The DNS Proxy button appears only if you have enabled the DNS Proxy option in the Features table on the Configure > My Proxy > Basic > General tab.
- Click **DNS Resolver** to see the total number of lookups and hits in the host database, and the average lookup time, the total number of lookups, and the number of successful lookups in the DNS server.
- Click **Virtual IP Address** to see the current virtual IP address mappings. The Virtual IP Address button appears only if you have enabled the Virtual IP option in the Features table on the Configure > My Proxy > Basic > General tab.
- Click **Client Connections** to see client connection totals for current connections, unique clients since last restart, clients that have exceeded the connection limit, and client for which connections were closed.

Performance

The Performance button displays historical performance graphs. See *Using Performance graphs*, page 123.

SSL

The SSL button provides information and statistics on SSL key data, certificate revocation and OCSP counts, and SSL logs.

- Click the **SSL Key Data** button to see information about SSL service health (Is alive), connection statistics, and SSL session cache hits and misses.

Click **CRL Statistics** to see CRL and OCSP statistics.
Click Reports to generate Certificate Authority reports and Incident reports.

**Viewing statistics from the command line**

You can use the command-line interface to view statistics about Content Gateway performance and Web traffic.

You can also configure, stop, and restart Content Gateway from the command line. See *Command-line interface, page 112,* and *Websense Content Gateway variables, page 297.*

To view specific information about a Content Gateway node or cluster, specify the variable that corresponds to the desired statistic.

1. Become root:
   
   `su`

2. Log on to a Content Gateway node.

3. From the Content Gateway `bin` directory (/opt/WCG/bin), enter the following command:

   ```
 ./content_line -r variable
   ```

   where *variable* is the variable that holds the information you want. For a list of the variables you can specify, see *Websense Content Gateway variables, page 297.*

   For example, the following command displays the document hit rate for the node:

   ```
 content_line -r proxy.node.http.cache_hit_ratio
   ```

**Working with alarms**

Content Gateway signals an alarm when it detects a problem, for example if the space allocated to event logs is full, or if it cannot write to a configuration file.

Not all alarms are critical. Some alarms report transient conditions. For example, a **Content Gateway subscription download failed: error connecting** alarm can be generated by a temporary disruption in Internet connectivity.
Navigate to **Monitor > My Proxy > Alarms** to see a listing of current alarms, as shown below.

The Alarm! (pending) bar appears at the top of the display when alarms exist.

---

**Note**

Content Gateway also sends select alarms to the Web module of the TRITON Manager, where they are referred to as **alerts**. Summary alert messages are displayed on the **Web > Status > Today** page. TRITON administrators can configure which Content Gateway conditions cause alert messages to be sent, and which methods (email or SNMP) are used to send the alert, on the **Settings > Alerts** pages.

---

**Clearing alarms**

After you have read an alarm message, you can click **Clear** in the alarm message window to dismiss the alarm. *Alarm messages, page 502*, provides a description of some of the alarm messages that Content Gateway generates.

---

**Important**

Clicking **Clear** only dismisses alarm messages; it does not resolve the cause of the alarms.

---

If the same alarm condition occurs a second time, it will not be logged if the first alarm has not been cleared.

---

**Configuring Content Gateway to email alarm messages**

1. Navigate to the **Configure > My Proxy > Basic > General** tab.
2. In the **Alarm Email** field, enter the email address to which you want to send alarms. Be sure to use the full mail address including @ notation, for example: receivername@example.com

3. Click **Apply**.

### Using a script file for alarms

Alarm messages are built into Content Gateway; you cannot change them. However, you can write a script file to execute certain actions when an alarm is signaled.

A sample script file named `example_alarm_bin.sh` is provided in `/opt/WCG/bin`. You can modify this file.

### Using Performance graphs

The Performance graphing tool (Multi Router Traffic Grapher) allows you to monitor Content Gateway performance and analyze network traffic. Performance graphs show information about virtual memory usage, client connections, cache hit and miss rates, and so on. The information provided is recorded from the time that Content Gateway was started. Statistics are gathered at 5-minute intervals.

Go to **Monitor > Performance** to access performance graphs.

---

**Important**

To run Multi Router Traffic Grapher (the Performance graphing tool), you must have Perl v5.005 or later installed on your Content Gateway system.

---

1. If your Content Gateway node is in a cluster, select the node whose statistics you want to view from the **Monitor > My Proxy > Summary** display.
2. On the **Monitor** tab, click **Performance**.
3. Click **Overview** to see a subset of available graphs.
   - Click **Daily** to see statistics for the current day.
   - Click **Weekly** to see statistics for the current week.
   - Click **Monthly** to see statistics for the current month.
   - Click **Yearly** to see statistics for the current year.
4. Wait at least 15 minutes after starting Content Gateway before looking at the graphs. It takes several 5-minute sample intervals for the tool to initialize statistics.

If Multi Router Traffic Grapher (MRTG) has not been configured, the system displays a message indicating that it is not available. To configure the tool:
1. Make sure Perl 5.005 is installed on your system.
2. At the command prompt, type
   
   perl ./pathfix.pl 'which perl'
   
   to ensure that the perl binary is in your PATH.
3. Change to the Content Gateway bin directory (/opt/WCG/bin).
4. Modify the MRTG update interval by typing the following at the command prompt:
   
   ./update_mrtg;sleep 5;./update_mrtg;sleep 5;
   
   By default, an MRTG update interval is set to 15 minutes. This command sets the update to 5 minutes.
5. Start the MRTG cron updates:
   
   ./mrtgcron start
6. Wait about 15 minutes before accessing the performance graphs from the Content Gateway manager.

---

**Note**

To stop MRTG cron updates, type the command

```
./mrtgcron stop
```

---

### Creating SSL-related reports

You can request a report detailing the status of certificate authorities (see *Certificate Authorities*, page 124) or listing incidents (see *Incidents*, page 126).

Reports can be either in HTML or comma-separated format. The comma-separate reports appear as Excel spreadsheets.

### Certificate Authorities

1. Go to the Monitor > SSL > Reports > Certificate Authorities tab.
2. Select the format of the report.
   a. HTML
   b. Comma-separated values (CSV)
      
      If you select CSV, the report is created as an Excel spreadsheet.
3. Specify the time period the report will cover.
   a. A number of days
   b. A starting date spanning to the present
   c. All records in the log
4. Indicate the sort order for the report.
   a. List authorities by date
   b. List OCSP good responses first
   c. List OCSP bad responses first
   See *Keeping revocation information up to date*, page 165.

5. Click **Generate Report** to generate the report.

HTML output looks like this:

<table>
<thead>
<tr>
<th>Certificate Authority</th>
<th>Count good</th>
<th>Percentage</th>
<th>Count bad</th>
<th>Percentage</th>
<th>Last Access Dat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go Daddy Class 2 Certification Authority</td>
<td>519</td>
<td>26.04 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-09 14:</td>
</tr>
<tr>
<td>Go Daddy Secure Certification Authority</td>
<td>519</td>
<td>26.04 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-09 14:</td>
</tr>
<tr>
<td>VeriSign Class 3 International Server CA - G3</td>
<td>69</td>
<td>3.46 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-09 15:</td>
</tr>
<tr>
<td>GeoTrust Global CA</td>
<td>2</td>
<td>0.10 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 08:</td>
</tr>
<tr>
<td>GeoTrust SSL CA</td>
<td>1</td>
<td>0.05 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 08:</td>
</tr>
<tr>
<td>Entrust.net Certification Authority (2048)</td>
<td>1</td>
<td>0.05 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 08:</td>
</tr>
<tr>
<td>DigiCert High Assurance EV Root CA</td>
<td>84</td>
<td>4.21 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 09:</td>
</tr>
<tr>
<td>GlobalSign Organization Validation CA</td>
<td>2</td>
<td>0.10 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 09:</td>
</tr>
<tr>
<td>GlobalSign Root CA</td>
<td>2</td>
<td>0.10 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 09:</td>
</tr>
<tr>
<td>Thawte SSL CA</td>
<td>3</td>
<td>0.15 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 09:</td>
</tr>
<tr>
<td>Thawte Trusted Signt CA</td>
<td>5</td>
<td>0.26 %</td>
<td>0</td>
<td>0.00 %</td>
<td>2014-01-10 09:</td>
</tr>
</tbody>
</table>
The same report in comma-separated format appears as follows:

<table>
<thead>
<tr>
<th>Certificate Authority</th>
<th>Count</th>
<th>Percent</th>
<th>Count bad</th>
<th>Percent</th>
<th>Last Access Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Go Daddy Class 2 Certification Authority</td>
<td>519</td>
<td>26.04%</td>
<td>0</td>
<td>0.00%</td>
<td>1/9/2014 14:28</td>
</tr>
<tr>
<td>Go Daddy Secure Certification Authority</td>
<td>519</td>
<td>26.04%</td>
<td>0</td>
<td>0.00%</td>
<td>1/9/2014 14:28</td>
</tr>
<tr>
<td>Entrust.net Certification Authority (2048)</td>
<td>1</td>
<td>0.05%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 8:30</td>
</tr>
<tr>
<td>DigiCert High Assurance EV Root CA</td>
<td>84</td>
<td>4.21%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 9:50</td>
</tr>
<tr>
<td>GlobalSign Organization Validation CA</td>
<td>2</td>
<td>0.10%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 9:51</td>
</tr>
<tr>
<td>Thawte SSL CA</td>
<td>2</td>
<td>0.10%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 9:51</td>
</tr>
<tr>
<td>Thawte Premium Server CA</td>
<td>3</td>
<td>0.15%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 9:52</td>
</tr>
<tr>
<td>DigiCert High Assurance CA-3</td>
<td>4</td>
<td>0.20%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 9:52</td>
</tr>
<tr>
<td>Entrust.net Secure Server Certification Authority</td>
<td>4</td>
<td>0.20%</td>
<td>0</td>
<td>0.00%</td>
<td>1/10/2014 9:52</td>
</tr>
<tr>
<td>GTE CyberTrust Global Root</td>
<td>33</td>
<td>1.66%</td>
<td>0</td>
<td>0.00%</td>
<td>1/11/2014 4:48</td>
</tr>
<tr>
<td>VeriSign Class 3 Public Primary Certification Authority</td>
<td>15</td>
<td>0.75%</td>
<td>0</td>
<td>0.00%</td>
<td>1/11/2014 4:04</td>
</tr>
<tr>
<td>VeriSign Class 3 Extended Validation SSL CA</td>
<td>9</td>
<td>0.45%</td>
<td>0</td>
<td>0.00%</td>
<td>1/11/2014 4:04</td>
</tr>
<tr>
<td>AddTrust External CA Root</td>
<td>7</td>
<td>0.35%</td>
<td>0</td>
<td>0.00%</td>
<td>1/11/2014 4:49</td>
</tr>
<tr>
<td>UTN-USR1First-Hardware</td>
<td>7</td>
<td>0.35%</td>
<td>0</td>
<td>0.00%</td>
<td>1/11/2014 4:49</td>
</tr>
<tr>
<td>Class 3 Public Primary Certification Authority</td>
<td>289</td>
<td>14.50%</td>
<td>0</td>
<td>0.00%</td>
<td>1/11/2014 4:09</td>
</tr>
<tr>
<td>Equifax Secure Certificate Authority</td>
<td>420</td>
<td>21.07%</td>
<td>0</td>
<td>0.00%</td>
<td>2/15/2014 8:54</td>
</tr>
</tbody>
</table>

Note
To delete the collected SSL log data, click Reset all collected data.

Incidents

To generate a report of SSL incidents:

1. Navigate to the Monitor > SSL > Reports > Incidents tab.
2. Select HTML or comma-separated (CSV) format. If you select comma-separated, the report is created in an Excel spreadsheet.
3. Specify the time period the report should cover. You can specify
   a. a number of days
   b. a date range
   c. the period since SSL support was enabled
4. Indicate the sort order for the report.
   a. Listing incidents by date
   b. Listing incidents by URL
   c. Listing the number of times each incident occurred
   See Managing HTTPS website access, page 166.
5. Click Generate Report to generate the report.
HTML output looks like this:

![HTML Report of EVA - Incidents](image1)

The same report in comma-separated format appears as follows:

![Validation Reports](image2)

Note

To delete the collected SSL log data, click **Reset all collected data.**
When Websense Content Gateway is deployed with the Web DLP module, the TRITON AP-WEB solution is extended to include:

- Web data loss prevention (DLP)
- Enhanced forensic data in the Threats dashboard in the Web module of the TRITON Manager.

When Content Gateway is deployed without the Web DLP module, your deployment still benefits from some data theft forensic data on the Threats dashboard.

**TRITON AP-WEB with the Web DLP module**

When TRITON AP-WEB is deployed with the Web DLP module, capabilities include forensics data in the Threats dashboard and data loss prevention (DLP) over Web channels such as HTTP, HTTPS, FTP, and FTP over HTTP. (A full TRITON AP-DATA deployment can extend data loss prevention to include channels such as mobile devices, removable media, and printers. For a complete description of TRITON AP-DATA, visit the Products page at [www.websense.com](http://www.websense.com).)

Web DLP, as well as extended data protection configurations, require separate installation of TRITON AP-DATA. Before configuring Content Gateway to work with TRITON AP-DATA, see the deployment and installation information hosted in the Websense Technical Library.

Content Gateway supports 2 methods of working with TRITON AP-DATA:

- Preferred: Some components installed with Content Gateway.

Related topics:
- *Registering and configuring TRITON AP-DATA*, page 131
- *Configuring the ICAP client*, page 136
- *ICAP failover and load balancing*, page 137
Working With Web DLP

- Over ICAP using TRITON AP-DATA components located on a separate host. This is intended for use with legacy Data Security Suite versions 7.1 and earlier.

Only one method can be used at a time.

How Web DLP works

In addition to the Web DLP data flow described below, enabling a special analytic engine called the Policy Engine, causes outbound traffic to be analyzed for data theft. In the Web module of the TRITON Manager, see the **Outbound security** options on Scanning > Scanning Options.

Web DLP data flow works as follows:

1. The proxy intercepts outbound content and provides that content to TRITON AP-DATA.

2. TRITON AP-DATA analyzes the content to determine if the Web posting or FTP upload is allowed or blocked.
   - The determination is based on TRITON AP-DATA Web DLP policy.
   - The disposition is communicated to the proxy.
   - TRITON AP-DATA logs the transaction.

3. The proxy acts on the TRITON AP-DATA determination.
   - If the content is blocked, it is not transmitted to the remote host and TRITON AP-DATA returns a block page to the sender.
   - If the content is allowed, it is forwarded to its destination.

---

**Note**

When a request is blocked and the DLP server sends a block page in response:

- Content Gateway forwards the block page to the sender in a 403 Forbidden message.
- The block page must be larger than 512 bytes or some user agents (e.g., Internet Explorer) will substitute a generic error message.
- The block page can be customized. See [Customizing TRITON AP-ENDPOINT DLP client messages](#).

---

Transactions over HTTP, HTTPS, FTP, and FTP over HTTP can be examined. Transaction details are logged by TRITON AP-DATA, per its configuration.

**TRITON AP-DATA components on-box with Content Gateway**

When Content Gateway is installed, a small number of TRITON AP-DATA components are installed on the same box. Content Gateway registers with TRITON AP-DATA components when it’s first configured and then checks the registration
status whenever it’s restarted, automatically re-registering if necessary. For more information about TRITON AP-DATA registration, see Registering and configuring TRITON AP-DATA, page 131.

After policies have been created and deployed in the DATA module of TRITON Manager, Content Gateway sends content, such as postings and uploads, to TRITON AP-DATA for analysis and policy enforcement.

Content Gateway collects and displays Web DLP transaction statistics, such as:

- The total number of posts
- The total number of posts analyzed
- The number of FTP uploads analyzed
- The number of blocked requests
- more

These statistics can be viewed in the Content Gateway manager by navigating to Monitor > Security > Web DLP. For a complete list of statistics, see Web DLP, page 281.

TRITON AP-DATA over ICAP

When the Web DLP policy engine is located on a separate host, Content Gateway can communicate with TRITON AP-DATA over ICAP v1.0. For configuration details, see Configuring the ICAP client, page 136. Note that integration with on-box components is the preferred deployment.

Registering and configuring TRITON AP-DATA

Help | Content Gateway | Version 8.1.x

Related topics:

- Stopping and starting Data Security processes, page 135

For an introduction to TRITON AP-DATA, see Working With Web DLP, page 129.

Registration and configuration summary:

- Registration with on-box Web DLP components is automatic. No configuration is required.
  Threat dashboard forensics data is collected automatically.
If registration fails, an alarm displays.

**Note**
Automatic registration is not available with AP-DATA Web Content Gateway. See *Manual registration*.

- Registration with off-box TRITON Management Server is automatic after **Configure > My Proxy > Basic > Web DLP > Integrated on-box** is enabled and Content Gateway is restarted. Content Gateway queries TRITON Manager for the presence of TRITON AP-DATA.

**Important**
Content Gateway and the TRITON management server system times should be synchronized to within a few minutes.

Registration is tested and retried, if needed, every time Content Gateway is started.
If automatic registration fails, an alarm displays.

**Important**
TRITON AP-DATA and Content Gateway communicate over several ports. If IPTables are configured on the Content Gateway host system, these ports must be open in IPTables. See these Technical Library articles: TRITON Ports and Configuring IPTables for Websense Content Gateway.

- Web DLP policies are configured in the **System Modules** section of the DATA module in TRITON Manager. You must deploy the policies to put them into effect. See TRITON AP-DATA Help for details.
- View registration status in the Content Gateway manager on the **Monitor > Summary** page by clicking More Detail and checking the list at the bottom of the Subscription Details section.
- Registration success and failure information is logged in: /opt/WCG/logs/dss_registration.log

**Registration and configuration details**

If you are deploying TRITON AP-WEB without the Web DLP module, registration with the Forensics Repository is automatic. There is no additional configuration.

If you are deploying TRITON AP-WEB with Web DLP, you must enable Web DLP in the Content Gateway manager:
Go to Configure > My Proxy > Basic and enable Web DLP > Integrated on-box. If this option is not enabled, registration is with the Forensics Repository only.

**Important**
Before enabling Web DLP > Integrated on-box, ensure that the TRITON management server is running and accessible, and that its system clock is synchronized with the Content Gateway server.

After Web DLP > Integrated on-box is enabled, registration with the DATA module of the TRITON Manager is automatic and is performed, if needed, every time that Content Gateway starts. To perform registration, Content Gateway queries the Websense Policy Broker for needed information, including IP address and cluster ID.

Registration status can be viewed in the Content Gateway manager on the Monitor > Summary page by clicking More Detail and reviewing the list at the bottom of the Subscription Details section.

Once registered, Content Gateway uses the Web DLP policy engine for malware detection. Go to the DATA module of the TRITON Manager to configure and deploy Web DLP policies.

*If automatic registration fails,* an alarm displays.

**Manual registration**

After Web DLP > Integrated on-box is enabled and Content Gateway has been restarted, you can attempt a manual registration by going to Configure > Security > Web DLP (see below).

Restarting Content Gateway always checks the registration status and initiates an auto-registration attempt, if needed.

Registration success and failure information is logged in: /opt/WCG/logs/dss_registration.log

**Important**

If Content Gateway is not located on a V-Series appliance, registration requires that the Content Gateway host system have an IPv4 address assigned to the eth0 network interface. After registration, the IP address may move to another network interface on the system; however, that IP address is used for Web DLP policy configuration and deployment and must be available as long as the two modules are registered.

Manual registration with TRITON management server:
1. Ensure that the Content Gateway and TRITON management server systems are running and accessible, and that their system clocks are synchronized within a few minutes.

2. Ensure that Web DLP > Integrated on-box is enabled. In the Content Gateway manager select Configure > Basic > General. In the list of Features, under Networking locate Web DLP, select On, then select Integrated on-box, and then click Apply.

3. Next to Integrated on-box, click the Not registered link. This opens the Configure > Security > Web DLP registration screen.

4. Enter the IP address of the TRITON management server.

5. Enter a user name and password for logging onto the TRITON manager. The user must be an administrator with DATA module Deploy Settings privileges.

6. Click Register. If registration is successful, a message confirms the result and prompts you to restart Content Gateway.

   If registration fails, an error message indicates the cause of failure. Correct the problem and perform the registration process again.

Configuration options

When registration is successful, on the Configure > Security > Web DLP page set the following options:

1. **Analyze FTP Uploads**: Select this option to send FTP uploads to TRITON AP-DATA for analysis and policy enforcement.

2. **Analyze HTTPS Content**: Select this option to send decrypted HTTPS posts to TRITON AP-DATA for analysis and policy enforcement. The HTTPS protocol option must be enabled on Content Gateway.

   **Note**

   For these options to have any effect, Content Gateway must be configured to proxy FTP and HTTPS traffic.

3. Click Apply to save your settings and then restart Content Gateway.

4. Go to the DATA module of the TRITON Manager to configure the Content Gateway module. See “Configuring the Web Content Gateway module” in TRITON AP-DATA Help.

   TRITON AP-DATA and Content Gateway communicate over several ports. If IPTables are configured on the Content Gateway host system, these ports must be
Working With Web DLP

open in IPTables. See these Technical Library articles: TRITON Ports and Configuring IPTables for Websense Content Gateway.

---

**Note**

A Content Gateway manager alarm is generated if:

- Web DLP is enabled but not registered
- Web DLP is enabled and registered but not configured in the DATA module of TRITON Manager

---

### Unregistering on-box Data Security

To disable the integration with the on-box Data Security policy engine:

1. Log on to Content Gateway Manager and navigate to Configure > Security > Web DLP > General. This page should indicate that the Registration status is Registered.
2. Navigate to Configure > My Proxy > Basic > General and locate the Web DLP option under Networking in the Features list.
3. Select Off and click Apply.
4. Click Restart at the top of the page to restart Content Gateway and automatically unregister Data Security.

---

### Stopping and starting Data Security processes

When Content Gateway is registered with Data Security Management Server and the on-box policy engine is running, 3 daemon processes are active on the Content Gateway machine:

- **PolicyEngine** handles transaction and data analysis.
- **PAFPREP** manages the Data Security fingerprint repository.
- **mgmtd** handles configuration storage and replication.

These processes start automatically whenever the computer is started.

You must have root privileges to stop or start the processes.

To stop or start all policy engine processes, on the command line enter:

```
/opt/websense/PolicyEngine/managePolicyEngine -command [stop|start]
```

To stop or start individual processes, on the command line enter:

```
service [service_name] [start|stop|restart]
```
ICAP can be used with any version of TRITON AP-DATA or Websense Data Security, however the direct interface is recommended when the policy engine is on-box with Content Gateway. See Registering and configuring TRITON AP-DATA, page 131.

ICAP must be used for inter-operation with Data Security Suite versions 7.1 and earlier.

### Note
A secondary ICAP server can be specified as a failover should the primary server fail.

The primary and secondary can also be configured to perform load balancing.

See ICAP failover and load balancing, below.

To configure integration with ICAP, log on to the Content Gateway manager and go to Configure > My Proxy > Basic > General.

1. In the Networking section of the Features table, select Web DLP On and then ICAP.
2. Click Apply, and then click Restart.
4. In the ICAP Service URI field, enter the Uniform Resource Identifier (URI) for the primary ICAP service, followed by a comma (no space) and the URI of the secondary ICAP service. A secondary ICAP service is optional.

A URI is similar to a URL, but the URI ends with a directory, rather than a page. Obtain the identifier from your Websense data protection administrator. Enter the URI in the following format:

```
icap://hostname:port/path
```

For hostname, enter the IP address or hostname of the Websense Data Security Suite Protector appliance.

The default ICAP port is 1344.

Path is the path of the ICAP service on the host machine.

For example:

```
icap://ICAP_machine:1344/reqmod
```

You do not need to specify the port if you are using the default ICAP port 1344. For example, the above URI can also be entered without the default port:

```
icap://ICAP_machine/reqmod
```
5. Under **Analyze HTTPS Content**, indicate if decrypted traffic should be sent to your Websense data protection solution for analysis or sent directly to the destination. The HTTPS protocol option must be enabled to send HTTPS traffic to your Websense data protection solution. See *Working With Encrypted Data*, page 141.

6. Under **Analyze FTP Uploads**, select whether to send FTP upload requests to your Websense data protection solution for analysis. The FTP proxy feature must be enabled to send FTP traffic to your Websense data protection solution. See *FTP*, page 328.

7. Under **Action for Communication Errors**, select whether to permit traffic or send a block page if Content Gateway encounters an error while communicating with your Websense data protection solution.

8. Under **Action for Large Files**, select whether to permit traffic or send a block page if a file larger than the size limit specified in your Websense data protection solution is sent. The default size limit for TRITON AP-DATA and Data Security Suite version 7.0 and later is 12 MB.

9. Click **Apply**.

---

**Note**

If you change the URI, you must restart Content Gateway. Other changes do not require a restart.

---

**ICAP failover and load balancing**

Content Gateway can be configured to failover to a backup ICAP server if the active ICAP server fails. The proxy detects the failure condition and sends traffic to the secondary server. If the secondary becomes unresponsive, the proxy uses the primary. If no ICAP servers are available, the proxy fails open.

Load balancing between 2 ICAP servers is also an option.

**Time to failover**

Content Gateway may experience temporary request-processing latency between the time the real failure occurs and the time the proxy marks the failed server as down. After the failed server is marked down, all new requests are sent to the second ICAP server. The time to failover is primarily limited by the connection timeout configuration.

**Failure conditions leading to failover**

- ICAP request failed due to layer-3 failure (twice for the same request)
- Failure to connect to a port within a given timeout
- Failure to send request (server resetting connection, and similar)

Excluded failure conditions

Content Gateway does not consider missing, invalid, or slow responses as failures.

However, Content Gateway does verify that the ICAP server is valid at startup by verifying the response to the ICAP OPTIONS request.

Recovery Conditions

After the failed server is marked down, new requests are sent to the second server. No new ICAP requests are sent to the failed server until that server is detected to be active again, based on the recovery conditions below.

Content Gateway tests for recovery conditions for each down ICAP server at a specified interval. If load balancing is disabled, requests continue to be sent to a secondary ICAP server until the primary comes back online. If load balancing is enabled, Content Gateway starts sending requests to a server (round-robin) as soon as it is marked up.

- TCP connection success
- Successfully sent OPTIONS request
- Successfully received valid response to OPTIONS request

Recovery actions

Upon server recovery (server comes back online and is marked as up)

- Load balancing ON: Requests start being distributed to the newly up server (round-robin)
- Load balancing OFF: If the primary server recovers, all requests start being sent to the primary. If the secondary server recovers, traffic continues to be sent to the primary, until the primary goes down.

Fail open

If all ICAP servers are down, a configuration option allows fail open or fail closed behavior. When all ICAP servers are down, the background thread continuously attempts to reestablish a new connection with each server.
## Configuration settings

These ICAP failover parameters are set in the `records.config` file (defaults shown):

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.icap.ICAPUri</td>
<td>STRING</td>
<td>(empty)</td>
<td>A comma-separated list of ICAP URIs. For example: icap://1.2.3.4:1344/reqmod, icap://4.3.2.1:1344/reqmod</td>
</tr>
<tr>
<td>proxy.config.icap.ActiveTimeout</td>
<td>INT</td>
<td>5</td>
<td>The read/response timeout in seconds. The activity is considered a failure if the timeout is exceeded.</td>
</tr>
<tr>
<td>proxy.config.icap.RetryTime</td>
<td>INT</td>
<td>5</td>
<td>The recovery interval, in seconds, to test whether a down server is back up.</td>
</tr>
</tbody>
</table>
| proxy.config.icap.FailOpen   | INT      | 1             | Set to:  
  * 1 to allow traffic when the ICAP servers are down  
  * 0 to send a block page if the ICAP servers are down |
| proxy.config.icap.LoadBalance | INT      | 1             | Set to:  
  * 1 to distribute requests to all available servers  
  * 0 to distribute requests to only the primary server. |
SSL (Secure Sockets Layer) and TLS (Transport Layer Security) are the industry standards for secure transmission of data on the Internet. They rely on data encryption and a system of trusted certificates issued by certificate authorities (CAs) that are recognized by clients and servers. SSL/TLS requests made in a browser are easily identified by the “https” string that leads the URL.

In the topics that follow, for convenience and simplicity, SSL/TLS is referred to simply as SSL.

To establish an SSL connection, the client sends an SSL connection request to the server. If the server consents, the client and server use a standard handshake to negotiate an SSL connection.

Content Gateway offers 2 types of support for HTTPS traffic. Only one can be used at a time.

- Simple connection management in which Content Gateway performs URL filtering and then allows the client to make the connection with the server.
Advanced connection management in which Content Gateway:
- Proxies requests
- Decrypts content and performs real-time content and security analysis
- Re-encrypts content for delivery to the client or origin server

The advanced proxy support is simply called HTTPS support or SSL support. How it works and how it’s configured is described in the following sections.

In the Content Gateway manager, SSL support is enabled on the Configure > My Proxy > Basic > General page in the Protocols area with the HTTPS option.

---

**Important**

Even when HTTPS support is **not** enabled and HTTPS is not decrypted, Content Gateway performs URL filtering. This means that for every HTTPS request received from a client, a URL lookup is performed and policy is applied.

In explicit proxy mode, when support for HTTPS is disabled, Content Gateway performs URL filtering based on the Host name in the request. If the site is blocked, Content Gateway serves a block page. Note that some browsers do not support display of the block page. To disable this feature, configure clients to not send HTTPS requests to the proxy.

In transparent proxy mode, when HTTPS is disabled, if there is an SNI in the request, Content Gateway gets the hostname from the SNI and performs URL filtering based on the hostname. Otherwise, Content Gateway uses the Common Name in the certificate of the destination server. However, if the Common Name contains a wildcard (*), the lookup is performed on the destination IP address. If the site is blocked, the connection with the client is dropped; no block page is served. To disable this feature when used with WCCP, do not create a service group for HTTPS.

---

**Note**

Content Gateway **does not cache HTTPS content.**

---

When HTTPS is **enabled**, each HTTPS request consists of two separate sessions:
- One from the client browser to Content Gateway. This is the **inbound** connection.
- Another from Content Gateway to the origin server that will receive the secure data. This is the **outbound** connection.
Different certificates are required for each session.

For additional information on SSL, TLS, and SSL/TLS certificates, search the Internet or consult any of the commercially available books.

Running in explicit proxy mode

If you have an existing PAC file, replace the `proxy.pac` file located in the Content Gateway `config` directory (default location is `/opt/WCG/config`) with the existing file. If you do not have a PAC file already, see Step 4 below for a script you can use as a basis for building a custom PAC file.

1. On the **Configure > My Proxy > Basic > General** tab, ensure that HTTPS is enabled. If it is disabled, set it to **On**, click **Apply**, and **Restart** Content Gateway.

2. Go to **Configure > Content Routing > Browser Auto-Config > PAC**.

3. In the **Auto-Configuration Port** field, specify the port that the proxy uses to serve the PAC file. The default port is 8083.

4. The PAC Settings area displays the `proxy.pac` file:
   - If you copied an existing PAC file into the Content Gateway `config` directory, the `proxy.pac` file contains your proxy configuration settings. Check the settings and make changes if necessary.
   - If you did not copy an existing PAC file into the Content Gateway `config` directory, the `proxy.pac` file is empty. Copy and paste the following script for your PAC settings. You must provide the proxy domain name or IP address. This template is for basic testing only. Further modify this file to meet all of your organization’s needs.
function FindProxyForURL(url, host) {
    url = url.toLowerCase();
    host = host.toLowerCase();
    if(url.substring(0, 5) == "http:" ){
        return "PROXY WCG_DOMAIN_NAME_or_IP_Address:8080";
    }
    else if(url.substring(0, 4) == "ftp:" ){
        return "PROXY WCG_DOMAIN_NAME_or_IP_Address:2121";
    }
    else if(url.substring(0, 6) == "https:" ){
        return "PROXY WCG_DOMAIN_NAME_or_IP_Address:8080";
    }
    else{
        return "DIRECT";
    }
}

5. Click **Apply**.

6. Click **Restart** on **Configure > My Proxy > Basic > General**.

Once the new PAC information is in place, you must inform your users to set their browsers to point to the PAC file. For example, if the PAC file is located on the proxy server with the hostname **proxy1** and Content Gateway uses the default port 8083 to serve the file, users must specify the following URL in the proxy configuration settings:

```
http://proxy1.company.com:8083/proxy.pac
```

The procedures for specifying the PAC file location vary among browsers.

For Microsoft Internet Explorer version 7.0 and later:

1. Go to **Tools > Internet Options > Connections > LAN Settings**.
2. Select **Use automatic configuration script** field, and enter
   `http://WCG_Domain_Name_or_IP_Address:8083/proxy.pac`
   in the **Address** field.
3. Click **OK**.

For Mozilla Firefox 2.0 and later:

1. Go to **Tools > Options > Advanced > Network > Connection > Settings**.
2. Select **Automatic proxy configuration URL** field, and enter
   `http://WCG_Domain_Name_or_IP_Address:8083/proxy.pac`
3. Click **Reload**, and then click **OK**.

See your browser documentation for details.
Enabling SSL support


   **Note**
   If you are deployed with Web DLP and it is configured to inspect HTTPS traffic, you must enable HTTPS.

2. Click Apply and then Restart.
3. Enter the name of the SSL certificate file. See Creating a subordinate CA, page 150.

Use the Configure > Protocols > HTTPS page to specify:

- The HTTPS port (default is 8080)
- Skype tunneling (explicit proxy only)
- Tunneling when a request returns an **Unknown protocol** error

1. The **HTTPS Proxy Server Port** is the port used for client to Content Gateway connections. The default is 8080. If traffic is transparent on 443, a default ARM NAT rule readdresses the requests to 8080. See Configure > Networking > ARM: Network Address Translation.

2. If Content Gateway is an **explicit proxy** and you want to allow Skype traffic, enable the **Tunnel Skype** option. This option is necessary because, although Skype presents an SSL handshake, Skype data flow does not conform to the SSL standard. Unless the traffic is tunneled, the connection is dropped.

To complete the configuration, in the Web module of the TRITON Manager ensure that filtering policies that apply to users of Skype allow “Internet telephony”. This is required for users of Skype whether HTTPS support is enabled or not.

Also, if not prevented, after the initial handshake Skype will route traffic over a non-HTTP port. To force Skype traffic to go through Content Gateway, a GPO should be used as described in the Skype IT Administrators Guide.

3. To tunnel HTTPS requests when the SSL handshake results in an unknown protocol error, enable **Tunnel Unknown Protocols**.

   By default, Content Gateway will not try to tunnel non-ssl traffic. A variable is available that will enable tunneling of non-ssl traffic.
Add the following to the records.config file (in /opt/WCG/config, by default) to turn on tunneling of non-ssl traffic.

```
CONFIG proxy.config.ssl_decryption_bypass.tunnel_non-ssl_traffic INT 1
```

Reset the value to 0 to disable the feature and turn off tunneling of non-ssl traffic. A restart of Content Gateway is required for this setting to take affect.

---

**Warning**

Tunneled connections are not decrypted or inspected.

---

TRITON AP-WEB behavior varies based on the type of proxy deployment.

- When Content Gateway is an **explicit proxy**, a URL lookup is performed and policy is applied before the SSL connection request is made. Transactions are logged as usual.

- When Content Gateway is a **transparent proxy**, if there is an SNI in the request, Content Gateway gets the hostname from the SNI and performs URL filtering based on the hostname. Otherwise, when Content Gateway sends the connect to the server, the unknown protocol error causes the request to be tunneled without the proxy being aware of it; no transaction is logged.

### Initial SSL configuration tasks

For inbound (client to Content Gateway) traffic, perform these steps to prepare for supporting HTTPS traffic through Content Gateway:

1. Create an internal root CA (certificate authority). In order to sign SSL traffic, Content Gateway requires an internal SSL Certificate Authority that has the ability to sign SSL certificates. This is for traffic between the browser and Content Gateway. See *Internal Root CA*, page 147.

2. Add this CA to the certificate tree. Servers, such as destination servers, check this tree to ensure that they can trust users because they have certificates from an authority listed here. The certificates listed on the certificate tree are certificate authorities you empower (trust) to verify the validity of individual websites. Any site signed by a certificate authority in the certificate tree with the “allow” status is allowed through Content Gateway. See *Managing certificates*, page 156.

3. Customize pages that browser users will see. See *Customizing SSL connection failure messages*, page 173. Among the pages that can be customized are a connect failure and certificate verification failure page.
Certificates

HTTPS security revolves around certificates. A certificate must meet 3 criteria:

- It must be current (not expired or revoked). See Validating certificates, page 161.
- It must be issued by a trusted CA (certificate authority). See Managing certificates, page 156
- The URL and the certificate owner must match. See Configuring validation settings, page 161.

HTTPS connections between the client browser and Content Gateway require a certificate issued by an internal CA. See Internal Root CA, page 147.

Connections between Content Gateway and the origin server require a certificate signed by one of the certificate signing authorities listed in the Certificate Authority Tree on the Configure > SSL > Certificates > Certificate Authorities tab. See Managing certificates, page 156.

Internal Root CA

The internal Root CA dynamically generates all certificates used between the client browser and Content Gateway.

- You must have an internal Root CA to complete an inbound connection.
- You can either import or create the internal Root CA.
The internal Root CA is stored in the SSL configuration database.

**Important**

Back up the existing internal Root CA before importing or creating a new one. This enables you to return to an earlier version, if necessary. See *Backing up your internal Root CA*, page 155 for details.

Only one internal Root CA can be active at a time.

**Important**

The default internal Root CA that is included with Content Gateway is not unique and should not be used in a production environment.

Replace the default internal Root CA with your organization’s Root CA or create a new one. See the sections that follow.

There are three options for creating an internal Root CA:

- Leverage an existing corporate CA and import it into Content Gateway. See *Importing your Root CA*, page 148.
- Create a new Root CA and make that CA available to browsers. See *Creating a new Root CA*, page 149.
- Create a subordinate CA. This leverages a corporate CA, but can also be revoked by the corporate CA. See *Creating a subordinate CA*, page 150.

### Importing your Root CA

If your organization already has a Root CA, you can import it. This certificate must be trusted by all browsers in your organization. Be sure to back up any new internal Root CA that you import. See *Backing up your internal Root CA*, page 155 for details.

1. Go to **Configure > SSL > Internal Root CA > Import Root CA**.
2. Browse to select the certificate. The certificate must be in X.509 format and base64-encoded.
3. Browse to select the private key. It must correspond to the certificate you selected in Step 2.

**Important**
The certificate and private key format must match.

Additionally, the private key format must match the format required by the importing node (unencrypted or encrypted).

To verify the certificate and private key format, view the files in a text editor. Use **Backup Root CA** to export the CA from the database.

For information on converting the private key format, see:

- [Preparing an Internal Root CA for importing into a FIPS 140-2 enabled node](#)
- [Converting an RSA key type to a PKCS#8 key type](#)
- [Converting an encrypted private key to an RSA key](#)

4. Enter and confirm the passphrase.

5. Click **Import Root CA**. The imported CA is stored in the SSL configuration database.

---

**Creating a new Root CA**

If you do not already have a Root CA, fill in the fields on this tab to create one.

The process uses **openssl pkcs#8**.

Be sure to back up any new Root CAs that you create. See **Backing up your internal Root CA**, page 155 for details.

An asterisk (*) on this page indicates a required field.

1. Select **Configure > SSL > Internal Root CA**, and then select **Create Root CA**.

2. Provide requested information in the fields, particularly noting the following:

   - The fields **Organization**, **Organizational Unit**, and **Common Name** comprise a **distinguished name**.
     - For **Organization**, enter the name of your company.
     - For **Common Name**, enter the name of your company certificate authority.
The comment becomes part of the certificate. The first line you enter can be seen by end users.

Enter, and then confirm, the passphrase. (A passphrase is similar to a password. Usually, however, it is longer to provide greater security. It is recommended that you use a strong passphrase, with a combination of numbers, characters, and upper- and lower-case letters.

3. Click **Generate and Deploy Certificate** to deploy the certificate to the Content Gateway server.

## Creating a subordinate CA

Creating a subordinate certificate authority (sub CA) enables you to take advantage of all the information already existing for your Root CA. However, the Root CA can revoke the sub CA at any time.

Follow these steps to generate a sub CA using OpenSSL and the certificate services in Microsoft Windows.

### Preparation

- If you are not the Enterprise domain administrator, you will need to work with that person to get the correct domain permissions to generate a sub CA.
- Install the [OpenSSL](https://www.openssl.org) toolkit (www.openssl.org) on a Windows or Linux computer.

### Creating a Certificate Signing Request (CSR)

1. Create a CSR with OpenSSL.
   
   In a Windows Command Prompt or on the Linux command line, create a CSR with the following `openssl` command:
2. There will be a series of questions. Answer each question and make note of the challenge password; it will be needed later in the process.

   The openssl command generates 2 files:
   
   - **wcg.csr** -- the CSR that will be signed by the Certificate Authority to create the final certificate
   - **wcg.key** -- the private key

3. If you created the CSR on a Linux system, copy it to your Windows host with WinSCP or some other file transfer utility.

**Signing the request**

You must sign the request with Microsoft Certificate Services.
1. Open **weg.csr** with **WordPad** (to preserve the formatting) and copy the contents onto the clipboard (Edit > Select all; Edit > Copy).

   ![Certificate Request Image]

2. In **Internet Explorer**, go to the **Microsoft CA server**.

   Enter the following URL:

   http://<CA_server_IP_address>/certsrv

   The **Certificate Services** applet starts.

   ![Certificate Services Image]
3. On the **Welcome** screen, below the **Select a task** heading, select **Request a certificate**. The **Request a certificate page** displays.

4. Select to submit an **advanced certificate request**.
5. On the **Advanced Certificate Request** screen, select **Submit a certificate request by using a base-64-encoded CMC**. The **Submit a Certificate Request or Renewal Request** screen displays.

6. On the **Submit a Certificate Request or Renewal Request** screen, paste the content of the `wcg.csr` file (previously placed on the clipboard) in the **Certificate Template** drop down window and click **Submit**.

   The certificate is issued and the **Certificate Issued** screen displays. If, instead, the **Certificate Pending** screen displays, you do not have sufficient privileges to create a sub CA. Contact your Enterprise domain administrator to complete the certificate creation process and then proceed to step 7.

7. Select the **Base 64 encoded** radio button and then select **Download certificate**.

   Save the certificate to your desktop. Later you will import it into Content Gateway.

   With the base 64 encoded certificate on your desktop, along with the private key created during the CSR generating process, you are ready to import both into Content Gateway.
Importing the sub-CA into Content Gateway

1. Open the Content Gateway manager and go to Configure > SSL > Internal Root CA > Import Root CA.

2. Browse to select the certificate. The certificate must be in X.509 format and base-64-encoded.
3. Browse to select the private key. It must correspond to the certificate you selected in step 2.
4. Enter and then confirm the passphrase.
5. Click Import Root CA.
6. Restart Content Gateway.

Backing up your internal Root CA

Always back up the public and private keys of your internal Root CAs before importing or creating new ones. This enables you to return to an earlier version of the certificate, if necessary. In addition, back up any new Root CAs that you import or create.

1. Go to Configure > SSL > Internal Root CA > Backup Root CA.
2. Click Save Public CA Key to view or save the public CA key. This public key must be trusted by the users’ Web browsers. Consult your network administrator if you do not have the key.
3. Click Save Private CA Key to view or save the private CA key. Consult your network administrator if you do not have the key.
Managing certificates

Content Gateway initially populates the Certificate Authority Tree (trusted certificate store) with the list qualified by Mozilla for Firefox (see this mozilla.org page), by Microsoft for Internet Explorer, and by Apple for Safari. The CA tree is listed on the Configure > SSL > Certificates > Certificate Authorities tab. Content Gateway trusts origin servers that offer these certificates.

In the list a small “i” appears before the names of certificates that can be validated via CRL (certificate revocation lists) or OCSP (online certification status protocol). See Keeping revocation information up to date, page 165 for information about checking the revocation status of a certificate. Content Gateway checks the revocation status of certificates used for both inbound and outbound traffic.

Click on the name of a certificate authority to:

- View a certificate, page 156
- Delete a certificate, page 156
- Change the allow/deny status of a certificate, page 157

View a certificate

1. Go to Configure > SSL > Certificates > Certificate Authorities.
2. Select the name of the authority whose status you want view.
3. In the pop-up window, select Click to view certificate.
4. Follow the directions in the Opening window to open or save the file.

Delete a certificate

1. Go to Configure > SSL > Certificates > Certificate Authorities.
2. Select the name of the certificate authority you want to delete.
3. In the pop-up window, select Click to delete certificate.
4. Confirm or deny that you want to delete the certificate.
5. If you confirm that you want to delete the certificate, check that the certificate is no longer listed on Configure > SSL > Certificates > Certificate Authorities.

Related topics:

- Adding new certificate authorities, page 157
- Backing up certificates, page 158
- Restoring certificates, page 158
Change the allow/deny status of a certificate

1. Go to Configure > SSL > Certificates > Certificate Authorities.
2. Select the name of the authority whose status you want to change.
3. In the pop-up window, select Click to change status to. Depending on the status of the certificate, your choice is allow or deny. If you change the status to deny, a red X appears next to the name of the certificate authority in the certificate authority tree. If you change the status to allow, a green circle appears next to the name of the certificate authority.

Adding new certificate authorities

Use the page Configure > SSL > Certificates > Add Root CA to manually import additional certificate authorities. Certificates that you import manually have a default status of allow.

Important
It is recommended that you back up your current certificates before making any changes, such as adding or deleting certificates. See Backing up certificates, page 158. If you want to back up your entire Content Gateway configuration, see Saving and restoring configurations, page 114.

1. Click Browse to navigate through the directory structure to find certificates. Look for files that have a “.cer” extension. The certificate must be in X.509 format and base64-encoded.
2. Click Add Certificate Authority.
3. If the import was successful, check that the new certificate is listed on Configure > SSL > Certificates > Certificate Authorities.

New CAs are also added when users visit a site signed by that authority. These certificates may be allowed or denied. See Change the allow/deny status of a certificate, page 157 for additional information.
Back up certificates

As a precaution, it is recommended that you back up the database containing the CA certificates whenever you make changes, such as adding or deleting a certificate. They can then be restored at a later date.

Use the page Configure > SSL > Certificates > Backup Certificates to back up certificates.

- Click Back Up Configuration to Database.

To back up your entire Content Gateway configuration, see Saving and restoring configurations, page 114.

Restore certificates

Use Configure > SSL > Certificates > Restore Certificates to restore certificates. The certificate database is propagated around the cluster.

1. Click Browse to navigate to the location of the backup certificate database.
2. Click Restore. You receive a message telling you that the restore was successful and indicating where the previous certificate database was backed up.

If you are running multiple proxies, use this restore feature to ensure that all the proxies have the same configuration.

Decryption and Encryption

SSL configuration settings for inbound traffic

SSL configuration settings for outbound traffic

SSL configuration settings for inbound traffic

Use Configure > SSL > Decryption / Encryption > Inbound to configure SSL and TLS settings and ciphers for inbound traffic.
1. Under **Protocol Settings**, indicate which protocols you want Content Gateway to support. Supported protocols are:
   - SSLv2
   - SSLv3 (disabled by default)
   - TLSv1 (enabled by default)

   **Note**
   TLSv1.1 and TLSv1.2 are also supported.

   Both are enabled by default for inbound connections, but not for outbound (to destination server) connections.

   Each is enabled/disabled with **records.config** variables:
   ```
 proxy.config.ssl.client.TLSv11 INT 1 --(0 = disabled)
 proxy.config.ssl.client.TLSv12 INT 1 --(0 = disabled)
   ```

   When Content Gateway is on a Websense appliance, use the Appliance manager Toolbox Command Line Utility to set the value.

   When Content Gateway is installed as software, use “content_line -s” on the Linux command line to set the value.

   Select the protocols that your organization’s security policy has adopted and that your browsers support.
   You must select at least one protocol.
   These settings override the settings for these protocols in the users’ browsers.
   You can select different protocols for outbound traffic.

2. The cipher list describes available algorithms and level of encryption between the client and Content Gateway.
   The **Default** setting indicates to use all available ciphers except the eNULL, ADH, and EXP suites.

   The strongest cipher (providing the highest level of encryption) is applied first. This can be set to a different level of encryption than for outbound traffic.

   Additional cipher settings are:
   - **High** encryption cipher suites: those with key lengths larger than 128 bits, and some cipher suites with 128-bit keys.
   - **Medium** encryption cipher suites: those using 128 bit encryption.
   - **Low** encryption cipher suites: those using 64- or 56-bit encryption algorithms but excluding export cipher suites.

   For inbound requests (clients connections to Content Gateway), consider using Low encryption to improve performance.

   For more information on ciphers, refer to [www.openssl.org/docs](http://www.openssl.org/docs).
3. Click **Apply**.
4. Click **Restart** on **Configure > My Proxy > Basic > General**.

### SSL configuration settings for outbound traffic

Use **Configure > SSL > Decryption / Encryption > Outbound** to configure SSL and TLS settings, session cache, and ciphers for outbound traffic (Content Gateway to the origin server).

1. **Under Protocol Settings**, indicate which protocols you want Content Gateway to support. Supported protocols are:
   - SSLv2
   - SSLv3 (disabled by default)
   - TLSv1 (enabled by default)

   **Note**
   TLSv1.1 and TLSv1.2 are also supported.
   Both are disabled by default for outbound connections.
   They are enabled/disabled with records.config variables:
   ```
 proxy.config.ssl.client.TLSv11 INT 0 --> (0 = disabled)
 proxy.config.ssl.client.TLSv12 INT 0 --> (0 = disabled)
   ```
   When Content Gateway is on a Websense appliance, use the Appliance manager Toolbox Command Line Utility to set the value.
   When Content Gateway is installed as software, use “content_line -s” on the Linux command line to set the value.

   Select the protocols that your organization’s security policy has adopted.
   You must select at least one protocol.
   You can select different protocols for inbound traffic.

2. Select **Session Cache** if you want to cache keys until the time specified in **Session Cache Timeout** expires. If keys are not cached, each request is negotiated again.
   Setting the **Session Cache Timeout** to 0 (zero) causes session caching to be disabled.

3. Indicate, in seconds, how long keys should be kept in the cache. The default is 300 seconds (5 minutes).

4. The cipher list describes available algorithms and level of encryption between Content Gateway and the origin server.
The **Default** setting indicates to use all available ciphers except the eNULL, ADH, and EXP suites.

The strongest cipher (providing the highest level of encryption) is applied first. This can be set to a different level of encryption than for inbound traffic.

Additional cipher settings are:

- **High** encryption cipher suites: those with key lengths larger than 128 bits, and some cipher suites with 128-bit keys.
- **Medium** encryption cipher suites: those using 128 bit encryption.
- **Low** encryption cipher suites: those using 64- or 56-bit encryption algorithms but excluding export cipher suites.

For outbound requests, consider using one of the higher encryption levels to improve security.

For more information on ciphers, refer to [www.openssl.org/docs](http://www.openssl.org/docs).

5. Click **Apply**.
6. Click **Restart** on **Configure > My Proxy > Basic > General**.

### Validating certificates

SSL certificate verification is an important component of SSL security. It is through certificate exchange and verification that the client, in this case Content Gateway, and the origin server verify that each is who it says it is.

Content Gateway performs this task with the certificate verification engine (CVE).

Use the tabs on **Configure > My Proxy > SSL > Validation** to enable and configure the CVE.

For information about options when verification fails and you prefer to trust the site, see **Bypassing verification**, page 164.

For a comprehensive discussion of the use and best practices of the CVE, see **SSL Certificate Verification Engine v7.8**.

### Configuring validation settings

1. Go to **Configure > SSL > Validation > General**.
2. **Enable the certificate verification engine**: This option enables and disables the certificate verification engine.
Certificate verification is disabled by default. This prevents the Content Gateway administrator and network users from being surprised by the effects of certificate verification when HTTPS is initially enabled (on Configuration > My Proxy > Basics > General).

If this option is not selected, certificate validation does not occur.

---

**Important**

If you disable the CVE, you need to provide settings on only the following pages:

- Configure > SSL > Decryption / Encryption > Inbound
- Configure > SSL > Decryption / Encryption > Outbound
- Configure > SSL > Customization > Connection Error

---

3. **Deny certificates where the common name does not match the URL**: When enabled, two checks are made:

   - First, the certificate’s Common Name is checked for an exact match of the destination URL.
   - If the first check fails, the certificate’s Subject Alternative Name (SAN) list is checked for an exact match of the destination URL.

Checks are case insensitive.

Because an exact match is required, there may be instances when a legitimate variation in the Common Name, or the absence of a matching variation in the SAN, may result in a block.

For example, using “https://cia.gov” when attempting to access “https://www.cia.gov” may result in a block. Additionally, a block may occur when accessing a site by IP address.

4. **Allow wildcard certificates**: This is a sub-option of When Deny Certificates where the common name does not match the URL. When enabled, this option allows matches with Common Names that include the “*” (wildcard) character in the name.

Some HTTPS servers use a wildcard in the Common Name so that a single certificate can cover an entire domain. For example: “*.example.com” to cover “email.example.com” and “stream.example.com”, etc.

Use of the wildcard means that individual servers within the domain are not verified; they are included as a result of the wildcard.

Allowing wildcard certificates eases the strict matching burden when a Common Name match is required. It is also helpful for domains that have multiple subdomains like google.com or yahoo.com. It also introduces some risk that a fraudulent or undesirable variation of a domain may go unblocked.
5. **No expired or not yet valid certificates:** When enabled, denies access to sites that offer an expired or not yet valid certificate. This is a basic check that is important because many malicious sites operate with expired certificates. If this option is not selected, access to those sites is permitted.

---

**Note**

Self-signed certificates (certificates without an official certificate authority) are considered invalid and belong in this category.

---

6. **Verify entire certificate chain:** When enabled, verifies expiration and revocation status of all certificates between the site certificate and the root Certificate Authority as specified in the certification path of the certificate. This is an important check.

7. **Check certificate revocation by CRL:** Certificate revocation lists (CRLs) are used to check a certificate’s revocation status. CRLs list certificates that have been issued and subsequently revoked by the CA.

   Verifying the revocation status is a basic check that is very important because certificates are revoked when they are improperly issued, have been compromised, have a false identity, or violate policies specified by the CA.

   If this option is enabled, it is recommended that you verify that the daily CRL update feature is enabled. Go to the Revocation Settings tab and enable the check box in CRL Settings.

   If this option is not used, it is recommended that you disable the daily CRL update feature. Go to the Revocation Settings tab and disable the check box in CRL Settings.

8. **Check certificate revocation by OCSP:** Online Certificate Status Protocol (OCSP) is an alternate way to check a certificate’s revocation status. While OCSP is beneficial, it is not used as widely as CRLs and therefore is not as reliable. Also, it is a real-time, Internet-hosted check that can introduce some request handling latency.

---

**Note**

It is recommended that you use OCSP in addition to, rather than instead of, CRLs. See *Keeping revocation information up to date*, page 165 for more information on CRLs and OCSP.

---

9. **Block certificates with Unknown OCSP state:** When OCSP revocation checking is enabled, enable this option to block certificates that return the “Unknown” status.

10. **Preferred method for revocation check:** When both CRL and OCSP revocation checking are enabled, use this option to indicate which method to apply first. The default is CRL.
11. **Block certificates with no CRL URI and with no OCSP URI:** When CRL checking, OCSP checking, or both are enabled, use this option to block certificates that do not have the expected, associated URIs. For example, if only CRL checking is enabled and the certificate doesn’t have a CRL URI, if this option is enabled the connection is blocked. When both CRL and OCSP checking are enabled, the block occurs only if both CRL and OCSP lack a URI.

You can view URI information in the certificate when you select to view the certificate in your browser. See *View a certificate*, page 156 for details.

Because many certificates do not include CRL or OCSP information, this option can result in a high number of verification failures. Often the failures are reported as “Unknown revocation state” errors.

This can result in a highly restrictive security policy, with many access denials.

As with all verification failures, you can allow for exceptions using the Incident List. See *Managing HTTPS website access*, page 166.

**Bypassing verification**

Use the Configure > SSL > Validation > Verification Bypass page to allow users to visit a site when certificate verification fails.

1. Select **Permit users to visit sites with certificate failure after confirmation** to enable users to proceed to a site after they have been informed that the site has an invalid certificate. This is referred to as **verification bypass**. If this check box is not selected, users do not have the option to browse to the site.

2. If verification bypass is enabled, you can specify a period of time, in minutes, that the user is allowed to bypass a particular site without having to click-through the warning again. Specify that period in the **Time before the user is notified again for the site** entry field. The default is 6 minutes.

3. Select **Enable the SSL session cache for bypassed certificates** to store information about bypassed certificates in cache and reuse the connections.

   - If this option is selected, not all users are notified that they are trying to access a site where verification has failed.
   - If this option is not selected, all users are notified about sites that do not have valid certificates.

It is recommended that you deploy initially with bypass verification enabled. Then, as the incident rate changes, you can use the Incident List to enforce policy. See *Managing HTTPS website access*, page 166.
Keeping revocation information up to date

It is recommended that before your site accepts certificates, it checks the status of the certificate to ensure that it has not been revoked. There are two methods of doing this: through CRLs (see Certificate revocation lists, page 165) and through OCSP (see Online certification status protocol (OCSP), page 165).

Certificate revocation lists

Use the Configure > SSL > Validation > Revocation Settings page to configure how Content Gateway keeps revocation information current. By default, Content Gateway downloads CRLs on a daily basis.

1. For daily downloads of the CRLs, select Download the CRL at, and select the time when the CRL download occurs.
2. Click Apply.

Use this page as well if you need an immediate CRL update.

1. Click Update CRL Now to download the CRLs at a time other than that specified.

Note

The CRL files can contain thousands of certifications, so downloading CRLs can take some time and consume CPU resources. It is recommended that you download CRLs at a time when Internet traffic on your system is light.

2. Click View CRL Update Progress to see the status of the update.

For more information on certificate revocation lists, see RFC 3280.

Online certification status protocol (OCSP)

OCSP is a protocol that operates on a request/response basis. That is, when a site wants to verify the revocation status of a certificate, it sends a request to the CA about the status of the certificate. The CA then responds, confirming the validity (or revocation) of the certificate.

OCSP, because it is dealing with requests, rather than downloading CRLs, can provide improved performance. However, not all CAs provide responses, so CRLs can provide information about the status of more certificates.

Content Gateway enables you to cache OCSP responses about the revocation state of a certificate. Caching responses may be useful in environments with high amounts of SSL traffic and where saving bandwidth is important.
Use **Configure > SSL > Validation > Revocation Settings** to configure how Content Gateway keeps revocation information current.

1. Specify, in days, how long OCSP data should be cached. If you do not want to cache OCSP data, enter **0**. The maximum is 1000 days.
2. Click **Apply**.

For more information on OCSP, see RFC 2560.

---

**Managing HTTPS website access**

Help | Content Gateway | Version 8.1.x

These tabs can help you manage access to websites and can aid the HelpDesk in troubleshooting access issues.

When a client receives an access denial message because the website does not comply with security policy, Content Gateway generates an **incident**. See **Viewing incidents**, page 166.

If you want to specify how Content Gateway treats a particular site, you can add that to the Incident List as well. See **Adding websites to the Incident List**, page 170.

Additional information on troubleshooting can be found in **SSL Certificate Verification Engine v7.8**.

---

**Viewing incidents**

Help | Content Gateway | Version 8.1.x

Use the **Configure > SSL > Incidents > Incident List** page to see a report of those times when clients received an access denial message.

A separate Incident List is kept for every node in a cluster. Incidents that are added or modified by the administrator, are copied around the cluster (synchronized). Unexpected incidents that, by default, result in an access denial message, are not synchronized in the cluster.
You can use the fields in this report to specify how Content Gateway treats requested access to a site in the future.

- To view a specific incident in the local list, enter the ID number or URL and click **Search Node**.
  
  If the node is part of a cluster and you want to see all instances of the ID or URL, in all lists, click **Search Cluster**.

- After viewing a search, to restore the complete local list, click **Show All in Node**.
  
  When the list is very large, **Show All** displays only the first 2,500-3,000 records. Use the scroll bar to scroll through the list. Use the ‘>’ and ‘<’ buttons to view the next or previous page.

### The incident report

You can sort on any column by clicking on the small triangle next to the column heading.

The incident report contains these fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node</td>
<td>The name of the Content Gateway node on which the list entry is located.</td>
</tr>
<tr>
<td>ID</td>
<td>Assigned by the system, this is the incident ID number, also called the Ticket ID. The HelpDesk can ask the user for the Ticket ID in the error message and quickly retrieve it from the URL Incident List. The end user sees the Ticket ID and a denial message.</td>
</tr>
</tbody>
</table>
Changing the status of an incident

When you change the status of an incident, you are changing how Content Gateway will treat the listed URL in the future.
1. Go to Configure > SSL > Incidents > Incident List.
2. Select one of the following from the drop-down list in the Actions column. See *The incident report, page 167* for an explanation of these options.
   - Tunnel
   - Block
   - Blacklist
   - Allow
3. Click OK. The icon in the Status column changes to reflect the new status.

**Deleting an incident**

1. Go to Configure > SSL > Incidents > Incident List.
2. Select the incident to delete. If the incident is not visible, you can search by ID. See *Viewing incidents, page 166*.
3. In the Action column, select Delete from the Action drop-down list, and then click OK.

If it is necessary or convenient, the entire Incident List can be deleted using a sqlite3 command:

```
sqlite3 /opt/WCG/config/new_scip3.db "delete from certificate_acl;"
```

**Changing the text of a message**

1. Go to Configure > SSL > Incidents > Incident List.
2. Locate the incident you want to examine more closely. See *Viewing incidents, page 166*.
3. Click the pencil to open a window where you can change the text of this error message. For example, the HelpDesk can add more detail to an error message.
4. Click Submit when the new text is complete, or click Close Window if you are not making any changes.

**Viewing incident details**

1. Go to Configure > SSL > Incidents > Incident List.
2. Locate the incident you want to examine more closely. See *Viewing incidents, page 166*.
3. Click the magnifying glass to see additional details about the incident, such as the:
   - Description – the message that appears in the incident listing
Working With Encrypted Data

- **Created** – The time the incident was created
- **Modified** – The time the incident was modified
- **Access attempts** – How many times users have attempted to access this site

Adding websites to the Incident List

Use **Configure > SSL > Incidents > Add Website** to specify sites that you want to allow, blacklist, or tunnel. Sites that are added manually are assigned chronological Ticket IDs. These appear on the Incident List. See *Viewing incidents*, page 166.

1. Enter the URL of the site you are adding to the Incident List.
2. Select either **By Certificate** or **By URL**.
   - **By Certificate** provides greater security. If you add a site by certificate, clients cannot bypass the policy by using the IP address rather than the URL. When you select By Certificate, Content Gateway retrieves the server certificate and adds the site to the Incident List. See *Viewing incidents*, page 166.
     - If sites are blocked by certificates, wildcard certificates are not accepted, even if the common name is recognized.
   - Select **By URL** to tunnel, allow, or blacklist the site.
3. In the Action drop-down list, specify if the site should be added with **Tunnel**, **Allow**, or **Blacklist** status. See *The incident report*, page 167 for details.
Working With Encrypted Data

- **Tunnel**: (Valid for By URL only) The site is tunneled. Traffic is not decrypted and Content Gateway does not check the certificate.

  **Important**
  Tunnel by URL does not work for all transparent proxy requests.

  It works under these conditions:
  - When the client application uses TLS and includes an SNI (server name indication), Content Gateway checks the Incident list for the hostname in the SNI.
  - When there is no SNI, Content Gateway connects to the origin server to retrieve the certificate. If the Common Name is a unique FQDN, Content Gateway looks it up in the Incident list. If the Common Name contains a “*” (wildcard), or is not a unique FQDN, Content Gateway looks for the IP address in the Incident list.

  Alternatively, use ARM *Static bypass rules*.

- **Allow**: Users can access the site even if the certificate is not valid. Traffic is decrypted, and certificate checking is disabled.
- **Blacklist**: The site is completely blocked. Users cannot access this site even if the Verification Bypass is configured.

4. Click **Apply**.

It is recommended that you manually add sites to the Incident List after you have monitored your network traffic for a period of time with the CVE disabled. (See *Configuring validation settings*, page 161.) This enables you to improve performance by tunneling trusted sites and blocking those you know should not be accessed. See *The incident report*, page 167 for information about assigning a status, such as tunneling, to a site and incident.

### Client certificates

For security, the destination server may request a client certificate.

**Related topics:**
- *Importing client certificates*, page 172
- *When a client certificate is always required: the Hostlist*, page 172
- *Deleting client certificates*, page 173
When a client certificate is requested

1. Go to Configure > SSL > Client Certificates > General.
2. Select Tunnel or Create incident to specify how Content Gateway should handle that certificate and site. You must choose Create incident if you want any disposition other than tunnel (white listing). White listing will always provide the certificate to the server. See The incident report, page 167 for a listing of possible dispositions.
3. Click Apply.

Importing client certificates

Use Configure > SSL > Client Certificates > Import to import certificates from the organization represented by the client.

---

Important
Use only X.509-formatted, base64-encoded certificates.

---

1. Enter the name of the client certificate.
2. Enter the public key for the certificate. You may need to check with your network administrator for the key.
3. Enter the private key for the certificate. You may need to check with your network administrator for the key.
4. Enter, and then confirm, the passphrase. It is recommended that you use a strong passphrase, with a combination of numbers, characters, and upper- and lower-case letters. You may need to check with your network administrator for the passphrase.
5. Click Import.

When a client certificate is always required: the Hostlist

Use Configure > SSL > Client Certificates > Hostlist to list destination servers that always require a client certificate. Be sure to import the certificate before adding it to the Hostlist. See Importing client certificates, page 172.

1. Enter the URL of the destination server that requires the client certificate.
2. In the Client Certificate drop-down list, select the name of the client certificate. Only certificates you have already imported appear in this list.
3. Click **Add**.

---

**Important**
For browsers that don’t send a Server Name Indicator (SNI), such as Internet Explorer version 8 and earlier, create an entry for both the destination IP address and the hostname.

---

**Deleting client certificates**

Use **Configure > SSL > Client Certificates > Manage Certificates** to delete imported client certificates.

1. Select the certificate you want to delete.
2. Click **Delete**.

---

**Customizing SSL connection failure messages**

You can customize the message users receive when:

- They are trying to connect to a site that has an invalid certificate. See *Certificate validation failed*, page 174.
- There is a connection failure. See *SSL connection failure*, page 174.

The following variables are available within the message templates.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%P</td>
<td>Protocol (HTTP or HTTPS)</td>
</tr>
<tr>
<td>%o</td>
<td>The IP address of the host of the proxy that generated the message</td>
</tr>
<tr>
<td>%H</td>
<td>Remote hostname of the request</td>
</tr>
<tr>
<td>%t</td>
<td>Time</td>
</tr>
<tr>
<td>%s</td>
<td>Name of the Content Gateway server</td>
</tr>
<tr>
<td>%u</td>
<td>Complete URL</td>
</tr>
<tr>
<td>$$DETAILS</td>
<td>Detailed error message</td>
</tr>
<tr>
<td>$$TICKETID</td>
<td>The ID number of the incident.</td>
</tr>
</tbody>
</table>
Certificate validation failed

Use Configure > SSL > Customization > Certificate Failure to customize the message users receive when certificate validation fails.

1. Edit the HTML code in the window to reflect your message. See Customizing SSL connection failure messages, page 173 for a listing of variables you can use in the message.
2. Click Preview to see your changes.
3. Repeat steps 1 and 2 until the message appears appropriately.
4. Click Apply to confirm your edits or Cancel to return to the original message.

SSL connection failure

Use Configure > SSL > Customization > Connect Error to customize the message users receive when Content Gateway is unable to connect to the destination web server.

1. Edit the text in the window to reflect your message. See Customizing SSL connection failure messages, page 173 for a listing of variables you can use in the message.
2. Click Preview to see your changes.

Note

You may find it helpful to click Preview to see how the default message appears.

There is a known problem in Internet Explorer 10 that sometimes results in the wrong block page being displayed. To work around the problem, click on Preview repeatedly until the correct page is displayed, or disable TLS 1.0 in Internet Explorer 10.
3. Repeat steps 1 and 2 until the message appears appropriately.
4. Click **Apply** to confirm your edits or **Cancel** to return to the original message.
Security

Websense Content Gateway allows you to establish secure communication between the proxy and other computers on the network. You can:

- Control which clients are allowed to access the proxy. See *Controlling client access to the proxy*, page 177.

- Control access to the Content Gateway manager using:
  - Administrator accounts (see *Setting the administrator ID and password*, page 178 and *Creating a list of user accounts*, page 179).
  - SSL (Secure Sockets Layer) protection for encrypted, authenticated access (see *Using SSL for secure administration*, page 180).

- Create filtering rules to control access to the Internet, specify special authentication requirements, and control other traffic transiting the proxy. See *Filtering Rules*, page 183.

- Configure Content Gateway integration into your firewall and control traffic through one or more SOCKS servers. See *Configuring SOCKS firewall integration*, page 187.

- Configure Content Gateway to use multiple DNS servers to match your site’s security configuration. See *Using the Split DNS option*, page 190.

- Configure Content Gateway to perform user authentication. The proxy supports Integrated Windows Authentication (with Kerberos), legacy NTLM (NTLMSSP), LDAP, and RADIUS user authentication. There is also support for multiple authentication methods with multiple authentication realms. See *Content Gateway user authentication*, page 191.

Controlling client access to the proxy

You can configure Content Gateway to allow only certain clients to use the proxy.

To allow access, specify client IP addresses and IP address ranges in `ip_allow.config`.

To deny access, do not include those client IP addresses in the file.
1. Navigate to the Configure > Security > Connection Control > Proxy Access page.
2. Click Edit File to open the configuration file editor for the ip_allow.config file.
3. Enter information in the fields provided, and then click Add. The fields are described in Configuration Options.
4. Click Apply to save the information, and then click Close.

Note
If an unauthorized client tries to access Content Gateway, a message is displayed in their browser, indicating that the requested content cannot be obtained.

Controlling access to the Content Gateway manager

You can restrict access to the Content Gateway manager to ensure that only authenticated users can change configuration options and view performance and network traffic statistics.

You can:
- Set the master administrator ID and password. A user who logs on to the Content Gateway manager with the administrator ID has access to all Content Gateway manager activities. See Setting the administrator ID and password, page 178.
- Create and maintain a list of user accounts that determines who can log on to the Content Gateway manager and which activities they can perform. See Creating a list of user accounts, page 179.
- Create an access control list of IP addresses that defines which machines can access the Content Gateway manager. See Controlling host access to the Content Gateway manager, page 180.
- Use SSL for secure administration. See Using SSL for secure administration, page 180.
- Require administrators to log on to the TRITON Manager, with or without two-factor authentication, and then use the Content Gateway access page in the Web module of the TRITON Manager to log on to the Content Gateway manager. See, Accessing the Content Gateway manager, page 11

Setting the administrator ID and password

During installation, you assign a password that controls administrative access to the Content Gateway manager. A user who logs on to the Content Gateway manager using
the correct ID and password can view all the statistics on the Monitor tab and change any configuration options on the Configure tab.

You can change the administrator ID and password at any time.

1. Navigate to the Configure > My Proxy > UI Setup > Login tab.
2. To change the current administrator ID, type a new ID in the Login field of the Administrator section.
3. To change the current password, type the current password in the Old Password field. Type the new password in the New Password field, and then retype the new password in the New Password (Retype) field.

Passwords must be 8 to 15 characters and include at least one:

- Uppercase character
- Lowercase character
- Number
- Special character

Supported characters include:

! # % & ' ( ) * + , . / ; : < = > ? @ [ ] ^ _ { | } ~

The following special characters are not supported:

Space $ : ` "

If you have forgotten the current administrator password, see Accessing the Content Gateway manager if you forget the master administrator password, page 15.

4. Click Apply.

Creating a list of user accounts

If a single administrator ID and password for the Content Gateway manager is not sufficient security for your needs, you can create a list of user accounts that define who has access to the Content Gateway manager and which activities they can perform.

1. Navigate to Configure > My Proxy > UI Setup > Login.
2. Enter the name of the user allowed to access the Content Gateway manager.
3. Enter the password for the user, and then enter the password again in the New Password (Retype) field.

Passwords must be 8 to 15 characters and include at least one:

- Uppercase character
- Lowercase character
- Number
- Special character

Supported characters include:
4. Click **Apply**.
5. In the **Access** drop-down list of the user table, select which Content Gateway manager activities the user can perform:
   - Select **No Access** to disable Content Gateway manager access for the user.
   - Select **Monitor Only** to allow the user to view statistics from the Monitor tab only.
   - Select **Monitor and View Configuration** to allow the user to view statistics from the Monitor tab and to view configuration options from the Configure tab.
   - Select **Monitor and Modify Configuration** to allow the user to view statistics from the Monitor tab and to change configuration options from the Configure tab.
6. Click **Apply**.
7. Repeat Step 2 through Step 6 for each user allowed to access the Content Gateway manager.

### Controlling host access to the Content Gateway manager

In addition to using an administrator ID and user accounts, you can control which hosts have access to the Content Gateway manager.

1. Navigate to **Configure > My Proxy > UI Setup Access**.
2. In the Access Control area, click **Edit File** to open the configuration file editor for the **mgmt_allow.config** file.
3. Enter information in the fields provided, and then click **Add**. All the fields are described in **UI Setup**, page 307.
4. Click **Apply**, and then click **Close**.

### Using SSL for secure administration

Websense supports the Secure Sockets Layer protocol (SSL) to provide protection for remote administrative monitoring and configuration using the Content Gateway manager. SSL security provides authentication of both ends of a network connection using certificates, and provides privacy using encryption.

To use SSL you must:
- Obtain an SSL certificate
- Enable the Content Gateway manager SSL option
Obtaining an SSL certificate

You can obtain an SSL certificate from a recognized certificate authority (for example, VeriSign) or, if you use Active Directory Certificate Services, you can generate a certificate using Certificate Services and a script provided with your Content Gateway software. (See Creating an SSL Certificate for Content Gateway manager with Active Directory Certificate Services.)

Install the certificate in the Content Gateway config directory (/opt/WCG/bin). You must either rename the certificate to the default filename private_key.pem, or specify the name of the certificate in the Content Gateway manager (follow the procedure in Enabling SSL, page 181).

Enabling SSL

After you have obtained an SSL certificate, you can enable SSL.

1. Navigate to the Configure > My Proxy > UI Setup > General tab.
2. Enable the HTTPS option.
3. In the Certificate File field, specify the filename of the SSL certificate.
   You have to change the file name only if the certificate file does not use the default name private_key.pem.
4. Click Apply.

FIPS 140-2 Mode

FIPS (Federal Information Processing Standard) 140-2 is a U.S. government security standard for hardware and software cryptography modules. Modules validated against the standard assure government and other users that the cryptography in the system meets the standard.

The cryptographic libraries used in TRITON AP-WEB, including the Content Gateway component, have passed FIPS 140-2 Level 1 validation. To see a listing of the validation, go to the 2012 list of Validated FIPS 140 1 and FIPS 140-2 Cryptographic Modules and search for “Websense”. For more information about the NIST FIPS 140-2 program, see Cryptographic Module Validation Program (CMVP) validation page.

By default, Content Gateway does not operate in FIPS 140-2 mode. Content Gateway still uses the FIPS-validated libraries, but it also allows cryptographic algorithms that are not supported by the FIPS 140-2 standard.

You can configure Content Gateway to enforce FIPS 140-2 on HTTPS connections.
When FIPS is enabled:

- HTTPS connections use TLSv1
- HTTPS connections use FIPS 140-2 approved algorithms
- Content Gateway generates SHA-256 certificates in response to origin server certificate requests

### Warning

Once the FIPS 140-2 option is enabled, you cannot disable it without a complete reinstall of Content Gateway. If Content Gateway is on an appliance, the appliance must be reimaged.

### Important

Where TRITON AP-WEB interfaces with some TRITON Enterprise components, there may be a FIPS 140-2 boundary. These include:

- In TRITON AP-WEB, traffic that flows through the cloud does not use FIPS 140-2.
- Traffic to the file sandbox does not use FIPS 140-2.
- TRITON AP-DATA does not use FIPS 140-2.
- TRITON AP-MOBILE does not use FIPS 140-2.
- TRITON Mobile Security does not use FIPS 140-2.
- When RSA SecurID is configured for the TRITON Manager logon, the connection to RSA SecurID is not FIPS 140-2.

### Important

Due to a system limitation, FIPS 140-2 mode cannot be used with IWA fallback to NTLM or Legacy NTLM user authentication.

To enable FIPS 140-2 on HTTPS connections:

1. In the Content Gateway manager go to **Configure > Security > FIPS Security**.
2. Review the warning, select **Enabled**, and click **Apply**.
3. If you are sure that you want to enable FIPS, restart Content Gateway.
4. If you do not want to enable FIPS, select **Disable** and click **Apply**.

---

**Note**

Even after FIPS 140-2 mode is enabled, by default SHA-1 certificates continue to be used for logon to TRITON management consoles. To learn about how to create and install stronger SHA certificates, see: [How do I create a stronger SHA certificate for Websense management consoles?](#)

---

**Filtering Rules**

Content Gateway supports the ability to create rules that inspect requests for certain parameters and, when matched, apply a specified action. Rules can be created to:

- Deny or allow URL requests
- Insert custom headers
- Allow specified applications, or requests to specified websites to bypass user authentication
- Keep or strip header information from client requests
- Prevent specified applications from transiting the proxy

---

**Note**

To create rules for IWA, NTLM, and LDAP user authentication, see [Rule-Based Authentication, page 213.](#)
To get started with Content Gateway user authentication options, see [Content Gateway user authentication, page 191.](#)

---

Filtering rules are created and modified on the **Configure > Security > Access Control > Filtering** tab. Rules are stored in the **filter.config** file.

Rules are applied in the order listed, top to bottom. Only the first match is applied. If no rule matches, the request proceeds.

Secondary specifiers are optional. More than one secondary specifier can be used in a rule. However, you cannot repeat a secondary specifier.

Three filtering rules are configured by default. The first denies traffic on port 25 to all destinations. The second and third bypass user authentication for connections to 2 Websense file sandbox destinations.

After adding, deleting, or modifying a rule, restart Content Gateway.

See **filter.config** for information about the structure of stored rules.
Creating filtering rules

1. Go to the Configure > Security > Access Control > Filtering tab and click Edit File to open filter.config in the file editor.

2. Select a Rule Type from the drop down list. The Rule Type specifies the action the rule will apply. The supported options are:
   - **allow** — allows particular URL requests to bypass authentication; the proxy caches and serves the requested content.
   - **deny** — denies requests for objects from specific destinations. When a request is denied, the client receives an access denied message.
   - **keep_hdr** — specifies which client request header information to keep.
   - **strip_hdr** — specifies which client request header information to strip.
   - **add_hdr** — causes a custom header-value pair to be inserted. Requires that Custom Header and Header Value are specified. Provides support for destination hosts that require a specific header-value pair. For an example, see Creating an add_hdr rule to allow Google enterprise gmail, below.

3. Select a Primary Destination Type and then enter a corresponding value in the Primary Destination Value field. Primary Destination Types include:
   - **dest_domain** — a requested domain name. The value is a domain name.
   - **dest_host** — a requested hostname. The value is a hostname.
   - **dest_ip** — a requested IP address. The value is an IP address.
   - **url_regex** — a regular expression to be found in a URL. The value is a regular expression.

4. If the Primary Destination Type is keep_hdr or strip_hdr, select the type of information to keep or strip from the Header Type drop down list. Options include:
   - date
   - host
   - cookie
   - client_ip

5. If the rule applies to only inbound traffic on a specific port, enter a value for Proxy Port.

6. If the rule type is add_hdr, specify the Custom Header and Header Value. The Custom Header and Header Value must be values that the destination host expects. See the example for Google Business GMail below.

7. Provide values for any required or desired Secondary Specifiers. They include:
   - Time — Specifies a time range, such as 08:00-14:00.
   - Prefix — Specifies a prefix in the path part of a URL.

---

**Note**

The “radius” rule type is **not** supported.

---

**Creating an add_hdr rule to allow Google enterprise gmail**

1. Go to the Configure > Security > Access Control > Filtering tab and click Edit File to open filter.config in the file editor.
2. Select a Rule Type from the drop down list. The Rule Type specifies the action the rule will apply. The supported options are:
   - **allow** — allows particular URL requests to bypass authentication; the proxy caches and serves the requested content.
   - **deny** — denies requests for objects from specific destinations. When a request is denied, the client receives an access denied message.
   - **keep_hdr** — specifies which client request header information to keep.
   - **strip_hdr** — specifies which client request header information to strip.
   - **add_hdr** — causes a custom header-value pair to be inserted. Requires that Custom Header and Header Value are specified. Provides support for destination hosts that require a specific header-value pair. For an example, see Creating an add_hdr rule to allow Google enterprise gmail, below.
3. Select a Primary Destination Type and then enter a corresponding value in the Primary Destination Value field. Primary Destination Types include:
   - **dest_domain** — a requested domain name. The value is a domain name.
   - **dest_host** — a requested hostname. The value is a hostname.
   - **dest_ip** — a requested IP address. The value is an IP address.
   - **url_regex** — a regular expression to be found in a URL. The value is a regular expression.
4. If the Primary Destination Type is keep_hdr or strip_hdr, select the type of information to keep or strip from the Header Type drop down list. Options include:
   - date
   - host
   - cookie
   - client_ip
5. If the rule applies to only inbound traffic on a specific port, enter a value for Proxy Port.
6. If the rule type is add_hdr, specify the Custom Header and Header Value. The Custom Header and Header Value must be values that the destination host expects. See the example for Google Business GMail below.
7. Provide values for any required or desired Secondary Specifiers. They include:
   - Time — Specifies a time range, such as 08:00-14:00.
   - Prefix — Specifies a prefix in the path part of a URL.
Suffix — Specifies a file suffix in the URL.

Source IP address — Specifies a single client IP address, or an IP address range of clients.

Port — Specifies the port in a requested URL.

Method — Specifies a request URL method:
- get
- post
- put
- trace

Scheme — Specifies the protocol of a requested URL. Options are:
- HTTP
- HTTPS
- FTP (for FTP over HTTP only)

User-Agent — Specifies a request header User-Agent value. This is a regular expression (regex).

You can use the User-Agent field to create application filtering rules that:
- Allow applications that don’t properly handle authentication challenges to bypass authentication
- Block particular client-based applications from accessing the Internet

See the Websense knowledge base article titled “When authentication prevents devices, browsers, and custom applications from working with the proxy” for more information and several examples.

8. When you have finished defining the rule, click Add to add the rule and then Apply to save the rule.

9. When you are done adding rules, click Apply to save all the changes and then click Close to close the edit window.

Editing a rule

1. Go to Configure > Security > Access Control > Filtering and click Edit File to open filter.config in the file editor.
2. In the list, select the rule to be modified and change the values as desired.
3. Click Set to update the rule and click Apply to save the rule.
4. Click Close to close the edit window.

Creating an add_hdr rule to allow Google enterprise gmail

Google provides a mechanism in the form of a custom header in the request, that allows Google to recognize and allow or block access to enterprise gmail and other Google Apps for Business.

To make Google’s solution work for enterprise gmail:

1. In the Web module of the TRITON Manager allow the category Internet Communication > General Email.
2. In the Content Gateway manager enable HTTPS (SSL decryption). If your site does not already use SSL support, acquaint yourself with the feature before enabling it.

3. In the Content Gateway manager, on the Configure > Security > Access Control page, open filter.config and create an add_hdr rule.

   a. Select add_hdr.
   b. For Primary Destination Type select dest_domain.
   c. For Primary Destination Value specify “mail.google.com”.
   d. In the Custom Header field, specify “X-GoogApps-Allowed-Domains”.
   e. In the Header Value field, specify your domain, or a list of domains separated by commas. For example: www.example1.com,www.example2.com
   f. Optionally, in the Source IP field specify the source IP address or range of source IP addresses to which this rule will be applied. For example: 10.10.20.30 or 10.10.1.1-10.30.40.50
   g. Click Add to add the rule.
   h. Click Apply to save all the changes, and then click Close to close the edit window.

When a user attempts to access Google services from an unauthorized account, Google displays a block page similar to this:

![Google accounts]

This service is not available

Gmail is not available for bob@gmail.com within this network. Gmail is only available for accounts in the following domains:

- example1.com
- example2.com

Please talk to your network administrator for more information.

Did you use this product with a different Google Account? Sign out of your current Google Account and then sign in to the account you want.

©2011 Google - Google Home - Terms of Service - Privacy Policy - Help

For Google’s description of the filtering solution, see the article Block access to consumer accounts and services while allowing access to Google Apps for your organization.
Configuring SOCKS firewall integration

SOCKS is commonly used as a network firewall, allowing hosts behind a SOCKS server to gain full access to the Internet while preventing unauthorized access from the Internet to hosts inside the firewall.

When Content Gateway receives a request for content that is not in the cache, it must request the content from the origin server. In a SOCKS configuration, instead of accessing the origin server directly, the proxy goes through a SOCKS server. The SOCKS server authorizes communication between the proxy and the origin server and relays the data to the origin server. The origin server then sends the content back to the proxy through the SOCKS server. If caching is enabled, Content Gateway caches the content before sending it to the client.

- Content Gateway can act as a SOCKS client, where it receives and serves HTTP or FTP requests as usual.
- Content Gateway can act as a SOCKS proxy, relaying requests to and from the SOCKS server (usually on port 1080).
- When Content Gateway is installed on a V-Series appliance it can act as a SOCKS server, providing all of the services of a SOCKS server. (When Content Gateway is not installed on an appliance, it cannot act as a SOCKS server.)

**Note**

Content Gateway does not perform authentication with the client. However, Content Gateway can perform user name and password authentication with a SOCKS server running SOCKS version 5.
Configuring SOCKS servers

Content Gateway can be configured to work with one or more SOCKS servers in your network. When Content Gateway is installed on a V-Series appliance, a SOCKS server is included with the module.

**Note**
When Content Gateway is not installed on a V-Series appliance, no SOCKS server is provided with Content Gateway.

To configure SOCKS servers:

1. Enable the SOCKS feature.
   a. Navigate to **Configure > My Proxy > Basic > General**.
   b. In the **Security** section of the **Features** table, click **SOCKS On**, and click **Apply**.
   c. Restart Content Gateway.

2. Specify the SOCKS version.
   a. Go to **Configure > Security > SOCKS > General**.
   b. Select the SOCKS version running on your SOCKS servers and click **Apply**.

3. To configure the V-Series on-appliance SOCKS server:
   a. Select the **Server** tab.
   b. In the **On-Appliance SOCKS Server** area, select **Enabled** and click **Apply**.
      An entry for the server is created in the **socks_server.config** file.
   c. To change the default entry, in the **SOCKS Server** area click **Edit File**. In the editor, select the **On-Appliance-SOCKS-Server** rule.
      You can change the port, whether it will be the default SOCKS server, and whether server authentication is applied.
      You cannot change the server name or the IP address, which is always the loopback address.
      After you make the needed changes, click **Set**.

4. To configure use of other SOCKS servers in your network:
   a. Select the **Server** tab and in the **SOCKS Server** area click **Edit File**.
   b. Enter a SOCKS server name.
   c. Enter the SOCKS server IP address or a domain name that is resolvable by the DNS server inside your network.
   d. Select whether it will be the default SOCKS server.
   e. If authentication will be used, provide a SOCKS user name and password.
   f. Click **Set** to add the server to the list.
You can always return to the editor, select the rule, make changes, and click Set to save them.

5. If there are multiple SOCKS servers, after they have been added, or while they are being added, you can arrange them in precedence-order by selecting an entry and moving it up or down the list with the up and down arrows.

6. Click Apply to accept your changes, and Close to close the editor.

7. In the SOCKS Server Rules area you can create rules for specific routing and bypass by destination IP address. See, Setting SOCKS server bypass, page 190.

8. To review configuration options that apply to all SOCKS servers, select the Options tab.
   a. Review and adjust the Server Connection Timeout value. It specifies how many seconds Content Gateway waits attempting to connect to a SOCKS server before timing out.
   b. Review and adjust the Connection Attempts Per Server value. It specifies how many times Content Gateway attempts to connect to a given SOCKS server before marking the server as unavailable.
   c. Review and adjust the Server Pool Connection Attempts value. It specifies how many times Content Gateway attempts to connect to a given SOCKS server in the pool before giving up.

9. When SOCKS server configuration is complete, click Apply and then go to Configure > My Proxy > General and restart Content Gateway.

To remove a server from the list:

1. In the SOCKS Server area click Edit File.
2. In the list, select the entry you want to delete and click X, to the left of the list.
3. Click Apply and then Close, when you're ready to exit the editor.
4. When configuration is complete, go to Configure > My Proxy > General and restart Content Gateway.

**Setting SOCKS proxy options**

To configure Content Gateway as a SOCKS proxy, you must enable the SOCKS proxy option and specify the port on which Content Gateway accepts SOCKS traffic from SOCKS clients.

As a SOCKS proxy, Content Gateway can receive SOCKS packets (usually on port 1080) from the client and forward requests directly to the SOCKS server.

---

**Note**

You must set SOCKS proxy options in addition to enabling the SOCKS option and specifying SOCKS server information described in Configuring SOCKS servers, page 188.
1. Navigate to **Configure > Security > SOCKS > Proxy**.
2. Enable **SOCKS Proxy**.
3. Specify the port on which Content Gateway accepts SOCKS traffic. The default is port 1080.
4. Click **Apply**.
5. Click **Restart on Configure > My Proxy > Basic > General**.

### Setting SOCKS server bypass

You can configure Content Gateway to bypass SOCKS servers and access certain origin servers directly.

1. Navigate to **Configure > Security > SOCKS > Server**. In the **SOCKS Server Rules** area click **Edit File** to open socks.config.
2. To modify an existing rule, select it from the list, make your changes, and click **Set**.
3. To create a new rule, specify the parameters and click **Add**.
   a. Select a **Rule Type**:
      - **Route through SOCKS server**
      - **Do not route through SOCKS server**
   b. Specify a destination IP address or range of addresses. Never specify the all networks broadcast address: 255.255.255.255
   c. Select the SOCKS servers to be used for the traffic.
   d. Select whether the traffic will be distributed to the specified SOCKS servers in round robin fashion.
   e. Click **Add** to add the rule.
4. Click **Apply** and then **Close**.
5. Click **Restart on Configure > My Proxy > Basic > General**.

### Using the Split DNS option

You can configure Content Gateway to use multiple DNS servers, depending on your security requirements. For example, you can configure Content Gateway to look to one set of DNS servers to resolve host names on your internal network, while allowing DNS servers outside the firewall to resolve hosts on the Internet. This maintains the security of your intranet, while continuing to provide direct access to sites outside your organization.

To configure Split DNS, you must perform the following tasks:
Specify the rules for performing DNS server selection based on the destination domain, the destination host, or a URL regular expression.

Enable the Split DNS option.

In the Content Gateway manager:

1. Go to the Configure > Networking > DNS Resolver > Split DNS tab.
2. Enable the Split DNS option.
3. In the Default Domain field, enter the default domain for split DNS requests. Content Gateway appends this value automatically to a host name that does not include a domain before determining which DNS server to use.
4. In the DNS Servers Specification area, click Edit File to open the configuration file editor for the splitdns.config file.
5. Enter information in the fields provided, and then click Add. All the fields are described in splitdns.config.
6. Click Apply, and then click Close.
7. On the Split DNS tab, click Apply to save your configuration.
8. Click Restart on Configure > My Proxy > Basic > General.

Content Gateway user authentication

Content Gateway supports several methods of authenticating users before their requests are allowed to proceed. These methods can be used together with TRITON AP-WEB user identification (XID) features to provide fallback should user authentication fail or become unavailable.

In both explicit and transparent proxy modes, Content Gateway supports user authentication with:

- Integrated Windows Authentication (Kerberos with SPNEGO to NTLM)

Related topics:

- Browser limitations, page 194
- Global authentication options, page 194
- Integrated Windows Authentication, page 199
- Legacy NTLM authentication, page 204
- LDAP authentication, page 207
- RADIUS authentication, page 210
- Rule-Based Authentication, page 213
- Mac and iPhone/iPad authentication, page 236
Security

- Legacy NTLM authentication (NTLMSSP)
- LDAP authentication
- RADIUS authentication

Content Gateway also supports combinations of Integrated Windows Authentication (IWA), Legacy NTLM, and LDAP using:

- Rule-Based Authentication, page 213

Rule-Based Authentication summary

Rule-Based Authentication is an ordered list of authentication rules. When a request is processed, the list is traversed top to bottom and the first match is applied.

Rules specify:

1. How to match a client.
   By:
   - IP address
   - Inbound proxy port (explicit proxy only)
   - User-Agent value
   - A combination of the above
2. The domain or ordered list of domains to authenticate against. With a list, the first successful authentication is remembered and used in subsequent authentications for that user.
3. Whether a customizable web portal page should be used for authentication.

Multiple Realm Networks: Rule-Based Authentication supports multiple realm network structures in which Windows Active Directory domains do not have mutual trust relationships and therefore require that each domain’s members be authenticated by a domain controller within their domain. In this environment rules are created that specify:

1. Members of the realm (untrusted domain) by IP address or proxy port
2. The realm (domain) they belong to

Authenticating when domain membership is unknown: Some organizations do not always know what domain a user belongs to. For example, this can happen when organizations are rapidly acquiring new businesses. The unknown domain membership problem can be handled in rule-based authentication by creating a rule (or rules) for IP address lists or ranges that also specifies an ordered list of domains to attempt to authenticate against. The first successful authentication is remembered and used in later authentications.

Authentication based on User-Agent value: One or more User-Agent values can be specified in an authentication rule. Often this is a list of browsers. When the User-Agent value matches a rule, authentication is performed against the specified domain(s). If the User-Agent value doesn’t match any rule, and no rule matches based on other values, no authentication is performed (this is always true; if no rule matches, no authentication is performed).
Selecting the authentication method

The authentication method is selected in the **Authentication** section of the **Configure > My Proxy > Basic** page. Configuring authentication for rule-based authentication begins with selecting **Rule-Based Authentication**.

Supported domain controllers and directories

- Windows NT domain controllers
- Novell eDirectory 8.5.1 or later (LDAP only)
- Oracle DSEE 11g (LDAP only)

Best practices when using Windows Active Directory

If you have only one Active Directory domain, or if all of your Active Directory domains share inbound and outbound trust relationships, the best option is to deploy Integrated Windows Authentication. However, if you want to control authentication based on User-Agent values, you must use Rule-Based Authentication.

If you have multiple domains or realms and user authentication is a requirement, you must use Rule-Based Authentication. For details, see **Rule-Based Authentication**, page 213.

If user identification is sufficient, you can use one of the TRITON AP-WEB user identification options. See the section titled **User Identification** in the Administrator Help for the Web module of the TRITON Manager.

Backup domain controllers

For Integrated Windows Authentication and Legacy NTLM, Content Gateway supports the specification of backup domain controllers for failover. If the primary domain controller (DC) does not respond to proxy requests, Content Gateway contacts the next DC in the list (the backup domain controller). For the next request, the proxy tries to contact the primary DC again and then contacts the backup DC if the connection fails.

Transparent user authentication

Content Gateway supports both transparent (Single Sign-On) and interactive (prompted) authentication. Transparent authentication is supported with Integrated Windows Authentication and Legacy NTLM. Some browsers provide only limited support. See **Browser limitations**, page 194.

On Windows networks, Single Sign-On allows users to sign on only once so that they can transparently access all authorized network resources. Therefore, if a user has already logged on to the Windows network successfully, the credentials specified
during Windows logon are used for proxy authentication and the user is not prompted again for a username and password.

Interactive authentication is supported in networks that are not configured for Single Sign-On and for use with browsers that don’t support Single Sign-On. With interactive authentication, users are prompted for credentials before they can access content through Content Gateway.

## Browser limitations

Not all web browsers support transparent user authentication.

### Note

Please see the [Web Protection Solutions Release Notes](#) for the most up-to-date information.

The following table indicates how a browser responds to an authentication request when Integrated Windows Authentication (IWA) is configured.

<table>
<thead>
<tr>
<th>Browser/Operating System</th>
<th>Internet Explorer (v10 and 11 tested)</th>
<th>Firefox</th>
<th>Chrome</th>
<th>Opera</th>
<th>Safari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>Performs transparent authentication</td>
<td>Performs transparent authentication (v28, 32 tested)</td>
<td>Performs transparent authentication (v34, 38 tested)</td>
<td>Performs transparent authentication (v24 tested)</td>
<td>Falls back to NTLM and prompts for credentials (v5.34.57 tested)</td>
</tr>
<tr>
<td>Mac OS X</td>
<td>Not applicable</td>
<td>Performs transparent authentication (v28, 32 tested)</td>
<td>Falls back to NTLM and prompts for credentials (v38 tested)</td>
<td>Falls back to NTLM and prompts for credentials (v20 tested)</td>
<td>Performs transparent authentication (v7.0.2 tested)</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux, update 6</td>
<td>Not applicable</td>
<td>Performs transparent authentication (v28 tested)</td>
<td>Browser issue prevents IWA from working (v34, 35 tested)</td>
<td>Not tested.</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

## Global authentication options

Use the [Configuration > Security > Access Control > Global Authentication Options](#) page to configure:
User authentication **Fail Open**/fail closed behavior

**Credential Caching** options

The **Redirect Hostname** (required for transparent proxy deployments)

These settings apply to all proxy user authentication configurations, within the parameters stated for each option below.

Whenever changes are made to any of these settings, click **Apply** to save your changes and then restart the proxy to put the changes into effect.

---

## Fail Open

**Fail Open** specifies whether requests are allowed to proceed for processing when user authentication fails.

When Fail Open is enabled and a TRITON AP-WEB XID agent is configured, if authentication fails and the client is identified by the XID agent, user-based policy is applied. If the user cannot be identified and a policy is assigned to the client’s IP address, that policy is applied. Otherwise, the Default policy is applied.

---

**Important**

The Fail Open setting does not apply when IWA is the authentication method and the client fails to retrieve a kerberos ticket from the domain controller (DC) because the DC is down.

The Fail Open setting does apply with IWA when IWA falls back to NTLM.

---

Options include:

- **Disabled** – specifies that requests do not proceed when authentication failures occur.

- **Enabled only for critical service failures** (default) – specifies that requests proceed if authentication fails due to:
  - No response from the domain controller
  - The client is sending badly formatted messages
Enabled for all authentication failures, including incorrect password – specifies that requests proceed for all authentication failures, including password failures.

---

**Important**

When user authentication is rule-based with a domain list:

- If **Enabled only for critical service failures** is selected, when a critical service failure occurs fail open is **not** applied. An error always results in fail closed.
- If **Enabled for all authentication failures, including incorrect password** is selected, after trying basic credentials with every domain in the list, fail open is applied.

---

**Credential Caching**

Credential Caching options include:

- Caching Method
- Cache Time-To-Live (TTL), in minutes
- LDAP Specific Settings

Credential caching settings apply to all clients whether Content Gateway is an explicit or transparent proxy.

Credential caching applies to:

- All authentication methods when Content Gateway is a transparent proxy
- When Content Gateway is an explicit proxy:
  - NTLM when Integrated Windows Authentication (IWA) falls back to or negotiates NTLM
  - Legacy NTLM

When IWA authenticates with Kerberos, Kerberos handles ticket (credential) caching.

**Caching Method options**

**Cache using IP address only** – specifies that all credentials are cached with IP address surrogates. This is the recommended method when all clients have unique IP addresses.

**Cache using Cookies only** – specifies that all credentials are cached with cookie surrogates. This is recommended when all clients share IP addresses, as with multi-host servers such as Citrix servers, or when traffic is NATed by a device that is forwarding traffic to Content Gateway.

**Cache using both IP addresses and Cookies** – specifies to use cookie surrogates for the IP addresses listed in the cookie caching list, and to use IP address surrogates for
all other IP addresses. This is recommended when the network has a mix of clients, some with unique IP addresses and some using multi-user hosts or that are subject to NATing.

The cookie caching list is a comma separated list that can contain up to:

- 64 IPv4 addresses
- 32 IPv4 address ranges
- 24 IPv6 addresses
- 12 IPv6 address ranges

For a description of surrogate credentials, see *Surrogate credentials*.

---

**Important**

Cookie mode caching:

- Cookie mode caching does not work with applications that do not support cookies, or with browsers in which cookie support has been disabled.
- When the browser is Internet Explorer, the full proxy hostname in the form “http://host.domain.com” must be added to the Local intranet zone.
- When the browser is Chrome, it must be configured to allow third-party cookies or configured for an exception to allow cookies from the proxy hostname in the form “host.domain.com”.
- When the IP address is set for cookie mode and the request method is CONNECT, no caching is performed.
- Cookie mode caching is not performed for FTP requests.
- Cookie mode caching is supported by Captive Portal.

---

**Note**

The user interface setting to disable the NTLM cache for explicit proxy has been removed. Although not recommended, the cache can be disabled for explicit proxy traffic in records.config by setting the value of `proxy.config.ntlm.cache.enabled` to 0 (zero).

---

**Cache Time-To-Live**

Cache Time-To-Live (TTL) specifies the duration, in minutes, that an entry in the cache is retained. When the TTL expires, the entry is removed and the next time that that user submits a request, the user is authenticated. If the authentication succeeds, an entry is placed in the cache.
The default TTL is 15 minutes. The range of valid values is 5 to 1440 minutes.

**LDAP Specific Settings**

When enabled, **Purge LDAP cache on authentication failure** causes the proxy to delete the authorization record for the client from the LDAP cache when an LDAP user authentication failure occurs.

**Redirect Hostname**

**Redirect Hostname** specifies an alternate hostname for the proxy.

---

**Note**

Redirect Hostname is not used by Integrated Windows Authentication.

By default, authenticating clients are redirected to the hostname of the Content Gateway machine. If clients are unable to resolve that hostname through DNS, or if an alternate DNS name for the proxy is defined, that hostname should be specified in the **Redirect Hostname** field.

---

**Note**

To ensure that user authentication for transparent proxy occurs transparently (without prompting the user for credentials), the browser must be configured so that the Redirect Hostname is in its **Intranet Zone**. Typically, this is achieved by ensuring that the Redirect Hostname is in the same domain as the computer on which the browser is running. For example, if the client is **workstation.example.com** and the Redirect Hostname is **proxyhostname.example.com**, the browser allows authentication to occur transparently. Consult your browser documentation.

---

**Note**

Content Gateway supports transparent authentication in proxy clusters that use WCCP load distribution. However, the **assignment method distribution attribute** must be the source IP address. For more information see *WCCP load distribution*, page 53.

---

**Surrogate credentials**

Surrogate credentials are entries placed in the credential cache after initial successful authentications.
An IP address surrogate ties a credential to an IP address and assumes that the IP address is used by only one user at any given time.

A cookie surrogate is tied to a cookie placed on the client’s system and depends on client application support for cookies. This method is required when a client IP address is shared by more than one user at a time, as with multi-user hosts such as Citrix servers.

After the initial successful authentication, Content Gateway uses the surrogate credential to respond to subsequent authentication requests on behalf of the user, thus reducing latency and the load on domain controllers and directory services. Credential surrogate entries are deleted when the Time-To-Live expires.

Integrated Windows Authentication

Integrated Windows Authentication (IWA) is a robust method of authenticating users who belong to shared-trust Windows domains (one or many).

Integrated Windows Authentication:
- Uses Kerberos and SPNEGO
- Supports NTLM in both explicit and transparent proxy modes
- Supports NTLMv2 and NTLMv1 with Session Security
- Can be used with Rule-Based Authentication
- Supports Internet Explorer 7 and later, Firefox 4 and later, Google Chrome 6 and later, Windows Safari 4 and later, Safari 4 and later on iPad iOS4, and Opera 10 and later
- Supports UTF-8 user names
- Supports fall back to prompted authentication

Requires that:
- Clients be joined to the domain
- Client browsers specify the Fully Qualified Domain Name (FQDN) of Content Gateway as an intranet site or trusted site
- In explicit proxy deployments, browsers must specify the FQDN of Content Gateway

If you are using IWA with rule-based authentication, see Rule-Based Authentication, page 213, for configuration steps.

Integrated Windows Authentication: Configuration summary

Follow these steps to configure IWA as the user authentication method for your Content Gateway deployment:
In the Content Gateway manager, enable Integrated Windows Authentication on the Configure > My Proxy > Basic page and click Apply.

Configure Global authentication options.

Join Content Gateway to the Windows domain. See Configuring Integrated Windows Authentication for a list of required conditions.

**Configuring Integrated Windows Authentication**

2. Configure the Global authentication options.
3. Join the Windows domain.

   To join the domain:
   - Content Gateway must be able to resolve the domain name.
   - Content Gateway system time must be synchronized with the domain controller’s time, plus or minus 1 minute.
   - The correct domain Administrator name and password must be specified.
   - There must be TCP/UDP connectivity to the domain controller(s) (ports 88, 389, 445).
   - If backup domain controllers are configured, they and their Kerberos Distribution Center (KDC) services must be reachable by Content Gateway on the network.

   a. In the Domain Name field, enter the fully qualified domain name.
   b. In the Administrator Name field enter the Windows Administrator user name.
   c. In the Administrator Password field enter the Windows Administrator password.
      The name and password are used only during the join and are not stored.
   d. Select how to locate the domain controller:
      - Auto-detect using DNS
      - DC name or IP address
      If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list, no spaces.
e. In the **Content Gateway Hostname** field, confirm that the hostname is the correct hostname and that it is no more than 15 characters (no more than 11 characters on V-Series appliances). If it is longer, it must be shortened if IWA is to be used. The length restriction results from the 15 character limit on NetBIOS hostnames.

---

**Warning**

Do not change the hostname after the domain is joined. If the hostname is changed, IWA immediately stops working and will not work again until the domain is unjoined and then re-joined with the new hostname.

---

f. Click **Join Domain**. If there is an error, ensure that the conditions outlined above are met and then see *Failure to join the domain*.

---

**Important**

All clients subject to authentication must be joined to the domain.

Browsers and other proxy clients must be configured to specify the FQDN of Content Gateway as an intranet site or trusted site.

---

g. Restart Content Gateway and run some test traffic through the proxy to verify that authentication is working as expected. If there is a problem, see *Troubleshooting Integrated Windows Authentication*.

### To unjoin the current domain and join a new domain

1. Navigate to the **Configure > Security > Access Control > Integrated Windows Authentication** tab and click **Unjoin**.
2. To join a new domain, in the **Domain Name** field, enter the fully qualified domain name.
3. In the **Administrator Name** field enter the Windows Administrator user name.
4. In the **Administrator Password** field enter the Windows Administrator password. The name and password are used only during the join and are not stored.
5. Select how to locate the domain controller:
   - **Auto-detect using DNS**
   - **DC name or IP address**
     - If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list, no spaces.
6. Click **Join Domain**.
To change the way the domain controller is found


2. In the Domain Controller section, select how to locate the domain controller:
   - Auto-detect using DNS
   - DC name or IP address
     If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list, no spaces.

3. Click Apply.

Configuring Integrated Windows Authentication with a load balancer

Integrated Windows Authentication (IWA) with a load balancer is supported.

---

**Important**

After upgrade, check and, if necessary, rejoin IWA domains.

---

Transparent proxy deployments do not require any special configuration.

Explicit proxy deployments that are behind a load balancer require a custom configuration

With Content Gateway, IWA uses the Kerberos protocol, with NTLM fallback.

In a load-balanced environment:

- Clients explicitly point to the Content Gateway cluster via the FQDN, which, when a load balancer is used, must resolve to the load balancer’s VIP.
- Kerberos then returns a ticket for the load balancer’s VIP, which the client then sends to Content Gateway.
- Because the ticket is not issued for the proxy’s IP address, but rather for the load balancer’s VIP, Content Gateway cannot decrypt the ticket and authentication fails.

To restate the problem, it’s not possible to configure clients to request Content Gateway’s Kerberos ticket because the client’s operating system handles the ticket request based on the FQDN of the proxy, which resolves to the VIP of the load balancer.

Normally, Content Gateway would be configured to share the hostname of the load balancer, but this is not possible when the load balancer requires hostname resolution (as with DNS-based load balancing).

Because it’s not possible to stop clients from sending a load-balancer’s Kerberos ticket to Content Gateway, the proxies must be configured to accept the load-balancer’s ticket, making the Content Gateway nodes appear as the load-balancer within the scope of Kerberos.
Please contact Websense Technical Support for detailed, step-by-step configuration instructions.

Troubleshooting Integrated Windows Authentication

This section covers 2 common problems:

- *Failure to join the domain*
- *Failure to authenticate clients*

**Failure to join the domain**

These conditions are required for Content Gateway to join a domain:

- Content Gateway must be able to resolve the domain name.
- Content Gateway system time must be synchronized with the domain controller’s time, plus or minus 1 minute.
- The correct domain Administrator name and password must be specified.
- There must be TCP/UDP connectivity to the domain controller(s) (ports 88, 389, 445).
- If backup domain controllers are configured, they and their Kerberos Distribution Center (KDC) services, must be reachable by Content Gateway on the network.
- If the Active Directory is configured with multiple Sites, ensure that the subnet that Content Gateway is on is added to one of them.

**Troubleshooting:**

- Errors encountered in the join action are reported at the top of the screen (the Integrated Windows Authentication tab).
- The error message usually includes a link to the failure log where you can get more details.
- Join failures are logged to `/opt/WCG/logs/smbadmin.join.log`
- In most cases, the failure message in the log is a standard Samba and Kerberos error message that is easily found with an Internet search.

**Failure to authenticate clients**

These conditions are required to authenticate clients:

- Content Gateway clients must be a member of the same domain as that joined by Content Gateway.
- Client system time must be in sync with the domain controller and Content Gateway to plus or minus 1 minute.
- Explicit proxy clients must not be configured to send requests to the IP address of Content Gateway. Clients must use the Fully Qualified Domain Name (FQDN) of Content Gateway. If the IP address is used, NTLM authentication is always performed.
The Content Gateway FQDN must be in DNS and resolvable by all proxy clients.

Browsers and other client applications must specify the FQDN of Content Gateway as an intranet site or trusted site.

When the Active Directory is configured with multiple Sites, the subnet that Content Gateway is on must be added to one of them. If it’s not, the following alarm may be generated when Content Gateway is restarted:

Windows domain [domain name] unreachable or bad membership status

Troubleshooting:

In the Content Gateway manager, use the Diagnostic Test function on the Monitor > Security > Integrated Windows Authentication tab. This Monitor page displays authentication request statistics and provides the diagnostic test function.

The Diagnostic Test function performs connectivity and authentication testing and reports errors. It also shows domain controller TCP port connectivity and latency.

Errors and messages are logged to:

- /var/log/messages
- content_gateway.out
- /opt/WCG/logs/smbadmin.log
- /opt/WCG/logs/smbadmin.join.log

Performance issues:

- **IWA (Kerberos):** Authentication performance is bound by CPU. There is no communication to the domain controllers for Kerberos authentication.
- **NTLM and Basic:** Domain controller responsiveness effects performance. The Monitor > Security > Integrated Windows Authentication page shows average response time.

**Legacy NTLM authentication**
Content Gateway supports the NTLM (NT LAN Manager) authentication protocol as a method of ensuring that users in a Windows network are authenticated before they access the Internet.

**Important**

This implementation of NTLM support (Legacy NTLM) relies solely on the NTLMSSP protocol. Although it performs reliably as documented in this section, it is highly recommended that the *Integrated Windows Authentication* mode be used instead. It provides more robust and secure support for NTLM.

**Important**

If rule-based authentication will be used, configure Legacy NTLM authentication through the *Rule-Based Authentication* option.

However, read this section to become familiar with Legacy NTLM features and restrictions.

When the Legacy NTLM option is enabled, the proxy challenges users who request content for proof of their credentials. The proxy then sends the proof of the user’s credentials directly to the Windows domain controller to be validated. If the credentials are valid, the proxy serves the requested content and stores the credentials in the NTLM cache for future use. If the credentials are not valid, the proxy sends an *authentication failed* message.

**Restrictions:**

1. **WINS resolution** is not supported. Domain controllers must have host names that can be resolved by a DNS server.
2. **Extended security** is not supported and cannot be enabled on the domain controller.
3. **NTLM2 session security** is not supported and cannot be enabled on clients. In the Security Settings area of the Windows operating system, inspect the *Network Security: Minimum session security* settings.
4. **NTLMv2** is not supported with Active Directory 2008. The required *Network Security: LAN Manager Authentication* setting is described in step 5 of *Configuring NTLM proxy authentication*, below.
5. Not all browsers support transparent NTLM authentication. See *Browser limitations*, page 194.

If you are using Legacy NTLM with rule-based authentication, see *Rule-Based Authentication*, page 213, for configuration steps.

**Configuring Legacy NTLM authentication**

1. Go to *Configure > My Proxy > Basic > General.*
2. In the **Authentication** section, click Legacy NTLM **On**, and click **Apply**.
3. Configure the **Global authentication options**.
4. Go to **Configure > Security > Access Control > Legacy NTLM**.
5. In the **Domain Controller Hostnames** field, enter the hostname of the primary domain controller, followed, optionally, by a comma separated list of backup domain controllers. The format of the hostname must be:

   host_name[:port][%netbios_name]

   or

   IP_address[:port][%netbios_name]

   **Note**

   If you are using Active Directory 2008, you must include the netbios_name or use SMB port 445. If you do not use port 445, you must ensure that the Windows Network File Sharing service is running on the Active Directory server. See your Windows Server 2008 documentation for details.

   **Note**

   If you are using Active Directory 2008, in the Windows **Network Security** configuration, **LAN Manager Authentication level** must be set to **Send NTLM response only**. See your Windows Server 2008 documentation for details.

6. Enable **Load Balancing** if you want the proxy to balance the load when sending authentication requests to multiple domain controllers.

   **Note**

   When multiple domain controllers are specified, even if load balancing is disabled, when the load on the primary domain controller reaches the maximum number of connections allowed, new requests are sent to a secondary domain controller as a short-term failover provision, until such time that the primary domain controller can accept new connections.

7. Click **Apply** and restart Content Gateway (**Configure > My Proxy > Basic > General**).

   Optionally, you can configure Content Gateway to allow certain clients to access specific sites on the Internet without being authenticated by the NTLM server; See **Access Control**, page 337).
LDAP authentication

Content Gateway supports the LDAP option to ensure that users are authenticated with an LDAP server before accessing content through the proxy.

---

**Important**

If rule-based authentication will be used, configure LDAP authentication through the *Rule-Based Authentication* option. However, read this section to become familiar with LDAP features and restrictions.

---

When LDAP is enabled:

- Content Gateway acts as an LDAP client and directly challenges users who request content for a username and password.
- After receiving the username and password, Content Gateway contacts the LDAP server to check that the credentials are correct.
- If the LDAP server accepts the username and password, the proxy serves the client the requested content and stores the username and password in the credential cache.
- Future authentication requests for that user are served from the cache until the cache entry expires (Time-To-Live value).
- If the LDAP server rejects the username and password, the user’s browser displays a message indicating that authorization failed and prompts again for a username and password.

LDAP authentication supports both simple and anonymous bind.

LDAP user authentication can support passwords containing special characters. Configuration is made directly in the `records.config` file. The following parameter must be enabled, and the correct encoding name to which the special characters belong must be configured. Add these entries to `records.config`. Note that the default setting is 0 (feature disabled).

```plaintext
// To enable the feature specify 1.
CONFIG proxy.config.ldap.proc.encode_convert INT <1 or 0>
// Specify an encoding name here. For example, // for German specify "ISO-8859-1".
CONFIG proxy.config.ldap.proc.encode_name STRING <encoding name>
```

**Configuring Content Gateway to be an LDAP client**

1. Go to Configure > My Proxy > Basic > General.
2. In the Authentication section, click LDAP On, and then click Apply.
3. Configure the Global authentication options.
4. Go to Configure > Security > Access Control > LDAP.
5. Enter the hostname of the LDAP server.
6. Enter the port on which Content Gateway communicates with the LDAP server. The default is port 389.

**Note**
When the LDAP directory service is Active Directory, requests from users located outside the global catalog’s base domain will fail to authenticate. This is because the default port for LDAP is 389 and requests sent to 389 search for objects only within the global catalog’s base domain. To authenticate users from outside the base domain, change the LDAP port to 3268. Requests sent to 3268 search for objects in the entire forest.

7. Enable Secure LDAP if you want the proxy to use secure communication with the LDAP server. Secure communication is performed on port 636 or 3269. Change the port value in the previous field, if necessary.
8. Select the type of directory service to set the filter for searching.
   - **Microsoft Active Directory** sets the type to `sAMAccountName` (default).
   - **Other** sets the type to `uid` for eDirectory or other directory services.
9. Enter the **Bind Distinguished Name** (fully qualified name) of a user in the LDAP-based directory service. For example:
   ```
 CN=John Smith,CN=USERS,DC=MYCOMPANY,DC=COM
   ```
   Enter a maximum of 128 characters in this field.
   If no value is specified for this field, the proxy attempts to bind anonymously.
10. Enter a password for the user specified in the previous step.
11. Enter the **Base Distinguished Name** (DN). Obtain this value from your LDAP administrator.
12. Click **Apply**.
13. Click **Restart** on Configure > My Proxy > Basic > General.

As optional steps, you can:

- Change LDAP cache options. See **Setting LDAP cache options**, page 208.
- Configure Content Gateway to allow certain clients to access specific sites on the Internet without being authenticated by the LDAP server. See **Access Control**, page 337).

**Setting LDAP cache options**

By default, the LDAP cache is configured to store 5000 entries and each entry is considered fresh for 3000 minutes. Change these options by editing the `records.config` file.

1. Open the `records.config` file located in `/opt/WCG/config`
2. Edit the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.ldap.cache.size</td>
<td>Specify the number of entries allowed in the LDAP cache. The default value is 5000. The minimum value is 256.</td>
</tr>
<tr>
<td>proxy.config.ldap.auth.ttl_value</td>
<td>Specify the number of minutes that Content Gateway can store username and password entries in the LDAP cache.</td>
</tr>
<tr>
<td>proxy.config.ldap.cache.storage_size</td>
<td>Specify the maximum amount of space (in bytes) that the LDAP cache can occupy on disk. When modifying this value, you must update the value of <code>proxy.config.ldap.cache.size</code> proportionally. For example, if you double the storage size, also double the cache size. Modifying this variable without modifying <code>proxy.config.ldap.cache.size</code> causes the LDAP subsystem to stop functioning.</td>
</tr>
</tbody>
</table>

3. Save and close the file.

4. From the Content Gateway bin directory (/opt/WCG/bin), run `content_line -L` to restart the proxy on the local node or `content_line -M` to restart the proxy on all the nodes in a cluster.

**Configuring secure LDAP**

By default, LDAP traffic is transmitted unsecured. You can make LDAP traffic confidential and secure by using Secure Sockets Layer (SSL) / Transport Layer Security (TLS) technology. You can enable LDAP over SSL (LDAPS) by installing a properly formatted certificate from either a Microsoft certification authority (CA) or a non-Microsoft CA.

To use LDAPS with Content Gateway:

1. Open the `records.config` file located in `/opt/WCG/config`.
2. Add following entry to `records.config`:

   ```
 CONFIG proxy.config.ldap.secure.bind.enabled INT 1
   ```
3. Navigate to **Configure > Security > Access Control > LDAP** and change the port to 3269.

---

**Note**

The Directory Service must be configured to support LDAPS authentication. See to the documentation provided by the directory provider for instructions.

---

**RADIUS authentication**

Content Gateway supports the RADIUS option to ensure that users are authenticated with a RADIUS server before accessing content through the proxy.

When the RADIUS option is enabled:

- Content Gateway acts as a RADIUS client and directly challenges users who request content for a username and password.
- After receiving the username and password, Content Gateway contacts the RADIUS server to check that the credentials are correct.
- If the RADIUS server accepts the username and password, the proxy serves the client with the requested content and stores the username and password entry in the RADIUS cache; all future authentication requests for that user are served from the RADIUS cache until the entry expires.
- If the RADIUS server rejects the username and password, the user’s browser displays a message indicating that authorization failed and prompts again for a username and password.

Content Gateway supports a primary RADIUS server and a secondary RADIUS server for failover. If the primary server does not respond to the proxy request within the specified timeout (60 seconds by default), Content Gateway tries to check the username and password again. If a response from the primary RADIUS server is not received after the maximum number of retries (10 by default), the proxy contacts the secondary RADIUS server. If Content Gateway cannot contact the secondary RADIUS server, the user is prompted again for a username and password.

The RADIUS cache is held in memory and stored on disk. Content Gateway updates the data on disk every 60 seconds. In addition, Content Gateway stores username and password entries in the RADIUS cache for 60 minutes. If a password and username entry is expired in the RADIUS cache, Content Gateway contacts the RADIUS server to accept or reject the username and password.

To configure Content Gateway to be a RADIUS client:

- Enable the RADIUS option.
- Specify the hostname or IP address of the primary and secondary (optional) RADIUS servers, and the port and shared key that Content Gateway uses to communicate with the RADIUS servers.
See Configuring Content Gateway to be a RADIUS client, page 211.

Configuring Content Gateway to be a RADIUS client

1. Go to Configure > My Proxy > Basic > General.
2. In the Authentication section, click Radius On, and then click Apply.
4. Enter the hostname of your primary RADIUS server.
5. Enter the port number through which Content Gateway communicates with the primary RADIUS server.
6. Enter the key used for encoding.
7. If you are using a secondary RADIUS server, enter the hostname, port, and shared key in the appropriate fields of the Secondary Radius Server (Optional) area.
8. Click Apply.

---

**Note**

In addition to performing these procedures, you must add the Content Gateway machine as a trusted client on the primary and secondary RADIUS servers and provide the shared key you want to use for the Content Gateway machine (the shared key must be the same one you specify in the procedure below). See your RADIUS server documentation.

---

Setting RADIUS cache and server timeout options

By default, the RADIUS cache and RADIUS server timeout options are configured as follows:

- The RADIUS cache is configured to store 1,000 entries and each entry is considered fresh for 60 minutes.
- Content Gateway can try to re-establish a connection to the RADIUS server if the connection remains idle for 10 seconds and can retry the connection a maximum of 10 times.

Change these default values by editing the records.config file.

1. Open the records.config file located in /opt/WCG/config.
2. Edit the following variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.radius.auth.min_timeout</td>
<td>Specify the amount of time in seconds that the Content Gateway connection to the RADIUS server remains idle before Content Gateway closes the connection.</td>
</tr>
<tr>
<td>proxy.config.radius.auth.max_retries</td>
<td>Specify the maximum number of times Content Gateway tries to connect to the RADIUS server.</td>
</tr>
<tr>
<td>proxy.config.radius.cache.size</td>
<td>Specify the number of entries allowed in the RADIUS cache. The minimum value is 256 entries. If you enter a value lower than 256, Content Gateway signals a SEGV.</td>
</tr>
<tr>
<td>proxy.config.radius.auth.ttl_value</td>
<td>Specify the number of minutes that Content Gateway can store username and password entries in the RADIUS cache.</td>
</tr>
<tr>
<td>proxy.config.radius.cache.storage_size</td>
<td>Specify the maximum amount of space that the RADIUS cache can occupy on disk. This value must be at least 100 times the number of entries. It is recommended that you provide the maximum amount of disk space possible.</td>
</tr>
</tbody>
</table>

3. Save and close the file.

4. From the Content Gateway bin directory (/opt/WCG/bin), run `content_line -L` to restart Content Gateway on the local node or `content_line -M` to restart WCG on all the nodes in a cluster.
Rule-Based Authentication

Using an ordered list of authentication rules, rule-based authentication provides support for multiple realm, multiple domain, and other special authentication requirements. When a request is processed, the rule list is traversed top to bottom, and the first match is applied.

Authentication rules specify:

1. How to match a user.
   By:
   - IP address
   - Inbound proxy port (explicit proxy only)
   - User-Agent value
   - A combination of the above

2. The domain or ordered list of domains to authenticate against.
   With a list of domains, the first successful authentication is cached and used in subsequent authentications. If IP address caching is configured, the IP address is cached. If Cookie Mode is configured, the cookie (user) is cached.

3. Whether a customizable web portal page should be used for authentication.

   **In rule-based authentication, only the first matching rule is tried.** If authentication is unsuccessful, no further authentication is attempted.

Rule-based authentication is designed to meet these special requirements:

- **Multiple realm networks:** Rule-based authentication supports multiple realm networks in which domains do not share trust relationships and therefore require that each domain’s members be authenticated by a domain controller within their domain. In this environment rules are created that specify:
  - Members of the realm (untrusted domain) by IP address or proxy port

Related topics:
- *Global authentication options*, page 194
- *Rule-based authentication Domain list*, page 218
- *Creating an authentication rule*, page 222
- *Working with existing authentication rules*, page 225
- *Rule-based authentication use cases*, page 226
- *Authentication based on User-Agent*, page 229
- *Authentication using Captive Portal*
- *Troubleshooting authentication rules*, page 233
The realm (domain) they belong to

- **Authentication when domain membership is unknown**: Some organizations do not always know what domain a user belongs to. For example, this can happen when organizations acquire new businesses and directory services are not mapped or consolidated. The unknown domain membership problem can be handled in rule-based authentication by creating a rule for IP address lists or ranges that specifies an ordered list of domains to attempt to authenticate against. The first successful authentication is remembered and used in later authentications. If authentication is not successful or the browser times out, no authentication is performed.

- **Authentication based on User-Agent value**: One or more User-Agent value can be specified in an authentication rule. Often this is a list of browsers. When the User-Agent value matches a rule, authentication is performed against the specified domain(s). If the User-Agent value doesn’t match any rule and no rule matches based on other values, no authentication is performed (this is always true in rule-based authentication; if no rule matches, no authentication is performed).

For use case examples see *Rule-based authentication use cases*, page 226.

---

**Note**

If all the users in your network can be authenticated by domain controllers that share trust relationships, you probably don’t need rule-based authentication.

However, the option is well suited to single domain environments that may benefit from multiple rules based on IP addresses, inbound proxy port (explicit proxy), and/or User-Agent values.

---

**Rule-based authentication structure and logic**

**Structure:**

- A list of domains is created and maintained.

  When a domain is added to the list, the authentication method is specified: IWA, Legacy NTLM, or LDAP. RADIUS is not supported.

  Only domains on the domain list can be specified in authentication rules.

  The domain list is created and maintained on the **Configure > Security > Access Control > Domains** tab. The domain list is stored in the **auth_domains.config** file.

- Authentication rules identify users (clients) by IP address, inbound proxy port (explicit proxy only), and/or User-Agent values, and attempt to authenticate the user against a specified domain or list of domains.
Authentication rules are defined on the **Configure > Security > Access Control > Authentication Rules** tab. Rules are stored in the **auth_rules.config** file.

---

**Note**

Credential caching configuration is performed on the **Configure > Security > Access Control > Global Configuration Options** tab. On that page you specify IP address caching, cookie caching, or both. The setting applies to both transparent proxy and explicit proxy traffic. When both IP address caching and cookie caching are specified, the IP addresses that cookie caching is applied to must be specified.

See **Credential Caching** for more information.

---

**Logic:**

- One or more rules are defined for clients and domains (**Configure > Security > Access Control > Authentication Rules**).
- When a request for web content is received:
  - A top-down rule list traversal begins
  - The first match is applied
  - If the rule includes a list of domains, authentication proceeds as follows:
    - The proxy attempts to authenticate with the first domain using the method configured for that domain. For example, if the first domain is IWA, Content Gateway transparently negotiates with the browser for credentials (407 or 401).
    - If authentication fails and Content Gateway hasn’t already challenged (prompted) for credentials, it then prompts for credentials.
  
    **Exception:** When Content Gateway is an explicit proxy, the first and second domains are IWA, and the client has a ticket from the authentication domain, there is no prompt for basic credentials. Instead, Content Gateway uses the Kerberos ticket provided by the client to attempt to authenticate with the second domain. If the attempt fails and the fallback to NTLM authentication fails, the user is prompted for credentials.
  
  When Content Gateway is a transparent proxy the standard behavior applies. This is because when the user is not a member of the first domain, the request for a Kerberos ticket fails because the client does not trust the FQDN sent with the request. The fallback to NTLM authentication also fails and the user is prompted for credentials.
    - Content Gateway then uses the basic credentials with each domain, starting with the second, proceeding sequentially until authentication succeeds or the list is exhausted.
    - Content Gateway then uses the basic credentials to attempt, again, to authenticate with the first domain.
- If authentication fails with all domains and the **Fail Open**
  (Configuration > Security > Access Control > Global Authentication Options) setting is:

  **Enabled only for critical service failures**, the proxy assumes that
  the user mis-entered their credentials, prompts again for basic
  credentials, and attempts, again, to authenticate sequentially against
  the list.

  **Enabled for all authentication failures, including incorrect
  password**, fail open is applied.

- If no rule matches, no authentication is attempted

  - Transactions are logged with the user name used by Filtering Service.
  - Proxy authentication statistics are collected and reported individually for each

---

**Important**

Content Gateway must be configured with a DNS server
that can resolve the fully qualified domain name (FQDN)
of Content Gateway for every realm used by IWA. If this
isn’t done, IWA fails to work. How to configure the DNS
server is up to the network administrator. One option is to
configure a DNS transfer zone (Sub Zone) between the
primary DNS server of Content Gateway and the DNS
server of each authentication realm (isolated domain).

---

**Rule-based authentication configuration summary**

1. If Content Gateway is an explicit proxy and you want to bring traffic in on
   multiple ports, specify the ports on the **Configure > Protocol > HTTP** tab.

   **Important**

   You must also configure your clients to use the correct
   port.

2. Configure **Global authentication options**, page 194 (Configure > Security >
   Access Control > Global Authentication Options).

3. Create a domain list (Configure > Security > Access Control > Domains).
   - To specify a domain in a rule, it must be a member of the **Domain List**.
   - Active Directory domains used with IWA must be joined.
Handling of unknown users:

**Important**
In rule-based authentication, Content Gateway may authenticate users that are outside the User Service primary domain. In these cases, Content Gateway can be configured to send an “alias” user name that User Service knows about. Or, you can send no name, in which case standard Filtering Service precedence is applied to determine the correct policy. (See [Enforcement order](#) in Administrator Help for the Web module.) This specification is made for each domain in the Domain list.

For more information, see *Unknown users and the ‘alias’ option*, below.


5. Restart Content Gateway to make the new rules take effect.

**Rule-based authentication best practices**

- If you don’t need rules, don’t use rule-based authentication. Deploying a single authentication method should provide the best performance.
- Use the fewest number of rules needed to satisfy your requirements.
- Do not use a domain list in a rule if it’s not needed.

**When a domain list is used**

- If there is an IWA or NTLM domain, make it first in the list.
- If there is more than one IWA or NTLM domain, place the domain with the most active members first in the list. In other words, make the first domain the one that will most often authenticate users.
- Note that if an IWA domain is first in the list and the user is not joined to that domain, the user will be prompted for credentials.
- Note that if the first domain in the list is LDAP, every user who matches the rule will be prompted for credentials. The credentials provided will be offered to each successive domain.
- If the domain list includes an IWA domain, the Captive Portal option is disabled.

**Unknown users and the ‘alias’ option**

In rule-based authentication it’s possible for Content Gateway to authenticate a user who is not recognized by User Service because the name is not in the User Service directory.
When an authenticated user name is not found by User Service, standard Filtering Service precedence is used to determine correct policy. There are several ways to address this:

- Change the User Services configuration so that it can discover and add the names to its directory.
- Add the unrecognized names to the primary domain. The names must match exactly. Define policies for the new names.
- For users who match a particular authentication rule, pass an alias name and add the alias name to the primary domain. The names must match exactly. Define a policy for the alias name.
- Do nothing, or select to use a blank (empty) alias. This causes standard Filtering Service precedence to be applied to determine the correct policy. See Enforcement order in Administrator Help for the Web module.

For some illustrative use cases, see Rule-based authentication use cases.

### Rule-based authentication Domain list

To use rule-based authentication, you create and maintain a Domain List. There must be at least one domain on the list before an authentication rule can be defined.

When a domain is added to the list, the authentication method is specified.

When a rule is defined, the domain or domains are selected from the domain list.

Supported domain types include:

- Active Directory (AD) domains to be used with IWA. These domains must be joined by Content Gateway, as well as by its members (users).
- Domain Controllers (DC) to be used with Legacy NTLM
- AD and uid domain controllers and directory servers to be used with LDAP

**Domain specification configuration summary:**

1. Rule-based authentication must be enabled (Configure > My Proxy > General).
3. Select the authentication method.
4. Specify a unique name that will help you recognize the domain and its purpose.
5. Optionally, configure the Aliasing option.
6. Specify the domain settings. These vary by authentication method.

See:

- Adding an Active Directory domain for use with IWA
- Adding an NTLM domain controller for use with Legacy NTLM
- Adding a domain (directory service) for use with LDAP
Adding an Active Directory domain for use with IWA

Active Directory (AD) domains to be used with IWA must be joined by both Content Gateway and directory members (clients).

To join a domain:

- Content Gateway must be able to resolve the domain name.
- Content Gateway system time must be synchronized with the domain controller’s time, plus or minus 1 minute.
- The correct domain Administrator name and password must be specified.
- There must be TCP/UDP connectivity to the domain controller(s) (ports 88, 389, 445).
- If backup domain controllers are configured, they and their Kerberos Distribution Center (KDC) services, must be reachable by Content Gateway on the network.

To specify and join a domain:

2. Select Integrated Windows Authentication from the Authentication Method drop down box.
3. In the Domain Identifier field, enter a unique name that will help you recognize the domain and its purpose.
4. Optionally, configure the Aliasing option. For information, see Unknown users and the 'alias' option, page 217.
5. In the Domain Name field, enter the fully qualified domain name. For example, ad1.example.com.
6. In the Administrator Name field enter the Windows Administrator user name.
7. In the Administrator Password field enter the Windows Administrator password.
   The name and password are used only during the join and are not stored.
8. Select how to locate the domain controller:
   - Auto-detect using DNS
   - DC name or IP address
     If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list, no spaces.
9. Confirm the Content Gateway Hostname.

**Warning**

Do not change the hostname after the domain is joined. If it is changed, IWA immediately stops working and will not work again until the domain is unjoined and then re-joined with the new hostname.
10. Click **Join Domain**.

The **Joined Domain Connections** section of the **Monitor > Security > Integrated Windows Authentication** page displays a list of joined domains and connections, and provides a diagnostic test function.

For troubleshooting tips, see *Failure to join the domain*.

**To change the way the domain controller is found, and other attributes**

1. On the **Domains** page, in the list select the domain you want to change and click **Edit**.
2. In the **IWA Domain Details** section, select how to locate the domain controller:
   - Auto-detect using DNS
   - DC name or IP address
     If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list, no spaces.
3. You can also change the **Aliasing** setting. See *Unknown users and the ‘alias’ option*, page 217.
4. Click **Apply**.

**Adding an NTLM domain controller for use with Legacy NTLM**

**Support for Legacy NTLM has these restrictions:**

- **WINS resolution** is not supported. Domain controllers must have hostnames that can be resolved by a DNS server.
- **Extended security** is not supported and cannot be enabled on the domain controller.
- **NTLM2 session security** is not supported and cannot be enabled on clients. In the Security Settings area of the Windows operating system, inspect the *Network Security: Minimum session security* settings.
- **NTLMv2** is not supported with Active Directory 2008.
- Not all browsers support transparent NTLM authentication. See *Browser limitations*, page 194.

For a complete description of support for Legacy NTLM, see *Legacy NTLM authentication*, page 204.

To add an NTLM domain for use in rule-based authentication:

1. Go to **Configure > Security > Access Control > Domains** and click **New Domain**.
2. Select **Legacy NTLM** from the **Authentication Method** drop down box.
3. In the **Domain Identifier** field, enter a unique name that will help you recognize the domain and its purpose. After the domain is added, the name cannot be changed.
4. Optionally, configure the **Aliasing** option. For information see: *Unknown users and the ‘alias’ option*, page 217.
5. In the **Legacy NTLM Domain Details** section:
   
a. In the **Domain Controller** entry field enter the IP address and port number of the primary domain controller. If no port is specified, Content Gateway uses port 139.
   
   You can also specify secondary domain controllers in a comma-separated list. The supported formats are:
   
   ```
 host_name[:port][%netbios_name]
 IP_address[:port][%netbios_name]
   ```
   
   The **netbios_name** is required with Active Directory 2008.
   
b. Specify whether load balancing should be applied among multiple DCs.

   ![Note]
   
   Even if load balancing is **not** selected, if multiple domain controllers are specified and the load on the primary domain controller reaches the maximum number of connections allowed, new requests are sent to a secondary domain controller as a short-term fail over provision, until such time that the primary domain controller can accept new connections.

6. Click **Add Domain**.

**Adding a domain (directory service) for use with LDAP**

When LDAP is used:

- Content Gateway acts as an LDAP client and directly challenges users who request content for a username and password.
- After receiving the username and password, Content Gateway contacts the LDAP server to check that the credentials are correct.
- If the LDAP server accepts the username and password, the proxy serves the client the requested content and stores the username and password in the credential cache.
- Future authentication requests for that user are served from the cache until the cache entry expires (Time-To-Live value).
- If the LDAP server rejects the username and password, the user’s browser displays a message indicating that authorization failed and prompts again for a username and password.

LDAP authentication supports both simple and anonymous bind.

To add an LDAP domain to the Domains list:

1. Go to **Configure > Security > Access Control > Domains** and click **New Domain**.
2. Select **LDAP** from the **Authentication Method** drop down list.
3. In the **Domain Identifier** field, enter a unique name that will help you recognize the domain and its purpose. After the domain is added, the name cannot be changed.

4. Optionally, configure the **Aliasing** option. For information see: *Unknown users and the ‘alias’ option*, page 217.

5. In the **LDAP Domain Details** section:
   a. In the **LDAP Server Name** field, enter the fully qualified domain name or IP address of the LDAP server.
   b. If the LDAP server port is other than the default (389), in the **LDAP Server Port** field, enter the LDAP server port.
   c. Enter the **LDAP Base Distinguished Name**. Obtain this value from your LDAP administrator.
   d. Select the **LDAP Server Type** from the drop down list.
      - Select **sAMAccountName** for Active Directory
      - Select **uid** for other directory services
   e. In the **Bind Domain Name** field, enter the bind distinguished name. This must be a Full Distinguished Name of a user in the LDAP directory service. For example:
      
      ```
 CN=John Smith,CN=USERS,DC=MYCOMPANY,DC=COM
      ```
   f. In the **Bind Password** field, enter the password for the name given in the **Bind Domain Name** field.
   g. Enable **Secure LDAP** if you want Content Gateway to use secure communication with the LDAP server. If enabled, set the LDAP port to 636 or 3269.

6. Click **Add Domain**.

**To unjoin or remove a domain from the Domain List**

On the **Domains** page, select the domain from the list and click **Unjoin** or **Delete**.

A confirmation dialogue displays. Confirm that you want to remove the domain from the list.

---

**Warning**

When a domain is removed, it is also removed from any authentication rules that specify it.

If it is the only domain specified in a rule, when the domain is removed the rule is made invalid and, therefore, the rule is removed.

---

**Creating an authentication rule**

Before you create an authentication rule you must:
Enable **Rule-Based Authentication** on **Configure > My Proxy > Basic > General**.

Configure **Global authentication options**, page 194

Create a **Rule-based authentication Domain list**, page 218

You must also know:

- The name of the domain(s) to be specified in the rule. This is the unique name that was specified when the domain was added to the Domains list.
- How to match users.
  
  By:
  - IP address – individual addresses or address ranges can be specified
  - Inbound proxy port (explicit proxy only)
  - User-Agent values
  - A combination of the above

To create a rule:

1. Go to **Configure > Security > Access Control** and review and adjust the **Global Authentication Options** and **Domains** list.
2. If AD domains are used with IWA, go to **Monitor > Security > Integrated Windows Authentication** and confirm that the IWA domains are joined and that connections are established.
3. Go to **Configure > Security > Access Control > Authentication Rules**. A list of existing authentication rules is displayed at the top of the page.
4. Click **Edit File** to open the rule editor.
5. If some rules have already been defined, note the order of the rules in the list at the top of the page.

**Important**

Rule order matters. The rule match traversal is performed top-to-bottom. Only the first match is applied.

6. Select **Status Enabled** if you want the rule to be active after the rule is added and Content Gateway is restarted.
7. Enter a unique **Rule Name** (required). A short, descriptive name will help you recognize the rule and its purpose. It is recommended that the name not exceed 50 characters.
8. If the rule applies to specific IP addresses, in the **Source IP Addresses** field, enter a comma-separated list of individual IP addresses and/or IP address ranges. Do not use spaces. For example:

```
10.4.1.1,10.12.1.1-10.12.254.254
```

The list can contain up to:
- 64 IPv4 addresses
- 32 IPv4 address ranges
- 24 IPv6 addresses
- 12 IPv6 address ranges

Source IP address ranges can overlap. Overlapping ranges may be useful as a quick way of identifying sub-groups in a large pool. In overlapping ranges, the first match is used.

**If this field is empty (undefined), all IP addresses match.**

9. If the rule applies to inbound traffic on a specific port, select the **Proxy Port** from the drop down list. This option is valid with explicit proxy only.

Inbound ports are specified on the **Configure > My Proxy > Protocols > HTTP > General** page in the **Secondary HTTP Proxy Server Ports** field. Client applications must be configured to send requests to the desired port.

**If undefined, all ports match.** Transparent proxy deployments should leave the field undefined.

10. To apply the rule to specific **User-Agent** values, enter POSIX-compliant regular expressions (regex) to match the desired values. To specify a common browser type, select a **Predefined** regex from the drop down list and click **Include**.

**If undefined, all User-Agents match.**

You can edit the field directly.

Use the “|” character (logical ‘or’) to separate regexes.

The “^” regex operator is not supported.

The regex is validated when the rule is committed to the configuration file, which happens after clicking **Add** or **Set** and then **Apply**. **If the regex is not valid, the rule is deleted and must be recreated with a valid regex.**

For an extended description and examples, see *Authentication based on User-Agent*, page 229.

11. Specify the domain(s) to authenticate against.

a. From the **Domains** drop down list, select the applicable domain and click **Include**. Only domains that have been added to the **Domains** list are available (**Configure > Security > Access Control > Domains**).
b. If an ordered list of domains will be used, select each domain one at a time and click **Include**. Then select domains in the list and use the up and down arrows to achieve the desired order.

---

**Important**

The **Fail Open** fail closed setting is applied after every domain in the list is tried.

---

12. Next to **Captive Portal**, click:
   - **Enabled for HTTPS Authentication page** to redirect users to a customizable web portal page for authentication.
     
     When this selection is enabled, the page will display using HTTPS.
     
     When HTTPS is used, a server certification is generated based on the internal root CA. To use this feature, you must import the internal root CA to ensure there is no certificate error. See **Importing your Root CA** for details.
   
   - **Enabled for HTTP Authentication page** to redirect users to a customizable web portal page for authentication.
     
     With this selection, the page is displayed using the HTTP protocol.
     
     This option is disabled if an IWA domain is included in the domains list.
     
     If this option is enabled and an IWA domain is added to the domains list, an error message will display.
     
     Note that when Content Gateway receives an unauthenticated POST request from a user who matches a Captive Portal rule, it redirects the user to the web portal authentication page and does not record the POST data. After successful authentication, the original POST data must be input again.
     
     See **Authentication using Captive Portal** for additional details.

13. Click **Add** to add the rule.

14. At the top of the page, check and adjust the position of the rule in the rule list. The first rule matched is applied.

15. Click **Apply** and then restart Content Gateway to put the rule into effect.

---

**Warning**

If a rule has invalid values, a warning message displays that identifies the invalid rule. The rule in not written to the file.

---

**Working with existing authentication rules**

Help | Content Gateway | Version 8.1.x

Use the rule editor in the Content Gateway manager. Do not directly edit auth_rules.config.
Editing a rule

2. In the table of rules, click on the rule to be changed. Its values populate the fields in the definition area.
3. Make the desired changes, click Set and then click Apply.

**Important**

If a field value is not valid, the rule is not committed and the rule entry is discarded. To avoid difficulty in recreating a rule, separately record the field values so that it is easy to correct the bad field value and recreate the rule.

4. Click Close to return to the Authentication Rules tab and click Refresh to see the updated list.
5. Restart Content Gateway to put the changes into effect.

Reordering the list of rules

Authentication rules are matched top-down in the list. Only the first match is applied.

2. In the table of rules, click on the rule that you want to reposition and then click the down or up arrow on the left to reposition the rule.
3. When the rules are in the desired order, click Apply.
4. Click Close to return to the Authentication Rules tab and click Refresh to see the updated list.
5. Restart Content Gateway to put the changes into effect.

Deleting a rule

2. In the table of rules, click on the rule to be deleted and click the “X” button on the left.
3. When you are done deleting rules, click Apply.
4. Click Close to return to the Authentication Rules tab and click Refresh to see the updated list.
5. Restart Content Gateway to put the changes into effect.

Rule-based authentication use cases
Multiple realm use case 2: Internal domain added; explicit proxy, page 228

Multiple realm use case 3: Temporary domain added; transparent proxy, page 228

Authentication based on User-Agent, page 229

**Multiple realm use case 1: Domain acquired; explicit proxy**

This describes a common case in which a second domain is added to an existing, single-domain environment. Content Gateway is an explicit proxy; clients use a PAC file.

An organization—let’s call them Quality Corp—uses a software installation of Content Gateway. They have one domain (QCORP), and one domain controller. They use NTLM to authenticate users.

Quality Corp acquires New Corp who has their own domain (NCORP) and domain controller. They use LDAP to authenticate users.

Quality Corp would like to manage the combined employees in a single domain, but they aren’t ready to make the infrastructure changes. Until they are, they would like to have a separate use policy for New Corp users (i.e., not use the “default” user on the QCORP domain).

Rule-based authentication makes this possible.

To configure the solution, Quality Corp would:

1. Enable Rule-Based Authentication.
2. Add a second, non-default HTTP port (Configure > Protocols > HTTP > General). This port will be used by all members of NCORP.
3. Create a PAC file for members of NCORP that causes them to connect to Content Gateway on the new, second port.
4. Create authentication rules, one each for the QCORP and NCORP domains:
   a. On Configure > Security > Access Control > Domains, add the QCORP and NCORP domains to the Domains list.
      - When adding NCORP, use the Aliasing option to specify “NCorpUser” for use in policy determination.
   b. On Configure > Security > Access Control > Authentication Rules, create an NCORP rule for connections on the second port. You must know the IP addresses/ranges of New Corp users, and specify the NCORP domain.
   c. Define the QCORP rule to handle all other connections.
5. In the Web module of the TRITON Manager, add “NCorpUser” to the QCORP domain as a valid user and create policy for that user.

At this point, everyone connecting to Content Gateway from NCORP is authenticated against the NCORP domain controller and gets the group policy associated with NCorpUser. Note that no individual user-based policy or features, such as quota time, are possible in this scenario. Transactions are logged as NCorpUser. This is all performed with no effect on the authentication, policy, or logging of users on the QCORP domain.
Multiple realm use case 2: Internal domain added; explicit proxy

This describes a common case in which a second domain is added to an existing, single-domain environment. Content Gateway is an explicit proxy; clients use a PAC file.

An organization—let’s call it BigStars—uses a software installation of Content Gateway. They have one domain (BIG), and one domain controller. They use NTLM to authenticate users.

A group in the company converts to Apple computers, which can’t be authenticated with NTLM. The IT group installs an LDAP server and creates a new domain—BIGAPL—for the Apple users.

Because this group of users previously existed and was managed on the primary domain (BIG), the IT department expects that both user-based policy and logging still apply.

The Rule-Based Authentication feature makes this possible.

To configure the solution, BigStars would:

1. Verify that every user in BIGAPL is also in BIG with the exact same user name.
2. Enable Rule-Based Authentication.
3. Add a second, non-default HTTP port (Configure > Protocols > HTTP). This port will be used by all members of BIGAPL.
4. Create a PAC file for members of BIGAPL that causes them to connect to Content Gateway on the new, second port.
5. Create authentication rules, one each for the BIGAPL and BIG domains.
   a. On Configure > Security > Access Control > Domains, add the BIGAPL and BIG domains to the Domains list.
   c. Define the BIG rule to handle all other connections.

At this point, all members of BIGAPL are authenticated with LDAP, but maintain their individual policy as specified by their existing NTLM identities. Logs and reports also refer to that same user.

Multiple realm use case 3: Temporary domain added; transparent proxy

This describes a common case in which a second, special-purpose domain is added to an existing, single-domain environment. Content Gateway is a transparent proxy using WCCP v2.

An organization—let’s call it Creative Corp—uses a software installation of Content Gateway. They have one domain (CCORP), and one domain controller. They use NTLM to authenticate users.

Creative Corp is about to launch a new product and wants to make a big splash. They decide to have an open house complete with kiosks, demonstrations, and presenters. The kiosks only need the default Internet policy to properly demonstrate the new
product. The IT manager wants to keep the kiosk network as walled off from the corporate intranet as possible. In this scenario, logging individual users isn’t a requirement.

The Rule-Based Authentication feature makes this possible.

To configure the solution, Creative Corp would:

1. Build a new, temporary network complete with its own domain controller. Let’s call this domain CTEMP.
2. Add one or more users to CTEMP. They can either match one-to-one with existing users on the primary domain, or be one or more generic users for use by the presenters.
3. Redirect Internet traffic on CTEMP to Content Gateway with WCCP v2.
4. Enable Rule-Based Authentication.
5. Create authentication rules, one each for the CTEMP and CCORP domains:
   a. On Configure > Security > Access Control > Domains, add the CTEMP domain, enable Aliasing and leave the name field blank. This will have the result of applying the Default policy to all users of CTEMP.
   b. Add the CCORP domain to the Domains list.
   c. On Configure > Security > Access Control > Authentication Rules, create a CTEMP rule to apply to all connections coming from the IP address range assigned to the CTEMP domain.
   d. Define the CCORP rule to handle all other connections.

At this point, anyone using the Internet on one of the kiosks is authenticated against the CTEMP network and has the Default policy applied to their requests.

Authentication based on User-Agent

In an authentication rule, a Request header User-Agent value can be used to determine if user authentication will be performed. This is useful when you want to authenticate users using a known set of client applications, usually browsers, and allow other applications, often a set of applications that don’t support authentication, to proceed without authentication. Such rules can also specify IP addresses and, if Content Gateway is an explicit proxy, inbound proxy port.

As with all authentication rules, the first matching rule is applied. (For a complete description of rule-based authentication, see Rule-Based Authentication, page 213.)

When the User-Agent field is used, the critical element is the regular expression (regex) that preforms the match.

✦ The regex must be POSIX-compliant.
   ■ The “^” regex operator is not supported.
✦ Predefined regexes are provided for the most common browsers.
✦ When the field is empty, all User-Agent values match.
✦ You can create a custom regex by directly editing the field.
Multiple regexes are allowed. They must be separated by a “|” (‘or’ operator).

When you click Apply (after Add or Set), the regex is parsed and validated. If the regex is not valid, the rule is deleted and must be recreated with a valid regex.

Following are a few examples of custom regexes.

Microsoft Internet Explorer 7, 8, or 9:

\texttt{MSIE ([7-9]\{1\}[.0-9]\{0\})}

Example User-Agent string:

\texttt{Mozilla/5.0 (Windows; U; MSIE 9.0; Windows NT 9.0; en-US)}

Microsoft Internet Explorer Mobile, all versions:

\texttt{IEMobile}

Example User-Agent string:

\texttt{Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0; IEMobile/9.0)}

Apple iPhone, all versions:

\texttt{(iPhone) OS ([d]+)_(\d+)(?:_(\d+))?}

Example User-Agent string:

\texttt{Mozilla/5.0 (iPod; U; CPU iPhone OS 4_3_3 like Mac OS X; ja-jp) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5}

Apple iPad, all versions:

\texttt{(iPad).+ OS ([d]+)_(\d+)(?:_(\d+))?}

Example User-Agent string:

\texttt{Mozilla/5.0 (iPad; CPU OS 6_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/6.0 Mobile/10A5355d Safari/8536.25}

Search the Internet for lists of User-Agent strings, example regular expressions, regex checkers, and related resources.

\textbf{Use case:}

This describes a case in which an organization with a single domain wants to authenticate requests from 2 common web browsers. They also want to bypass authentication for web applications that do not support authentication.

An organization—let’s call it Best Corp—uses Content Gateway. They have one domain (BCORP), and one domain controller. They use IWA to authenticate users.

Best Corp wants to ensure that:

\begin{itemize}
  \item Requests from common web browsers are authenticated. They control which web browsers are allowed on their computers.
  \item Web applications that don’t support authentication bypass authentication.
\end{itemize}
The User-Agent feature of rule-based authentication makes this possible.

To configure the solution, Best Corp:

1. Enables Rule-Based Authentication.
2. Adds the BCORP domain to the Domains list.
3. Creates an IWA rule that:
   a. Optionally, specifies the supported client IP address ranges.
   b. Specifies, by User-Agent value, the web browsers to authenticate.

   In the User-Agent field, they use the Predefined drop down list to select and Add Internet Explorer and Firefox. The regex looks like:
   
   \bMSIE*|Firefox*\b

That’s it. With this configuration, all requests from Internet Explorer and Firefox, the only 2 browsers that can be installed on their computers, are subject to user authentication. All other requests, most particularly web applications, bypass authentication. To further customize the approach, Best Corp could create other authentication rules and/or add proxy filtering rules (filter.config) to deny or bypass specific applications by User-Agent value.

**Authentication using Captive Portal**

Content Gateway provides a Captive Portal option when adding an authentication rule. Captive Portal may be especially helpful in handling mobile and other personal devices brought in to your TRITON AP-WEB networks.

This feature:

◆ Redirects users to a web portal page for authentication.
◆ Supports captive, interactive (prompted) user authentication of IP addresses (users) that match the Captive Portal rule.
◆ Can be used with LDAP and Legacy NTLM; IWA and RADIUS are not supported.
◆ Handles credential caching and expiration per the global configuration; cookie authentication and caching are also supported.

Note that most applications on mobile devices do not share cookies. For those applications, IP-based identification will be required. See the Credential Cashing section of Global authentication options for more information.

Also, for web applications that use Ajax, where Ajax is configured to prevent cookies, cookie-mode cannot support sites that include cross-origin requests (CORS) that rely on Ajax.

◆ Allows the authentication form (web portal page) to be customized to suit your needs.
◆ Supports only basic authentication.
◆ Provides the option to display the authentication page using either HTTP or HTTPS.
When adding an authentication rule (see Creating an authentication rule), a new option is provided. Navigate to Configure > Security > Access Control > Authentication Rules and click Enabled for HTTPS/HTTP Authentication page next to Captive Portal to select the feature. Users who match the rule are redirected to the new web portal authentication page.

- This option is disabled if an IWA domain is included in the Auth Sequence list.
- When this option is enabled, an error message will display if an IWA domain is selected for inclusion in the Auth Sequence list.

Note that when Content Gateway receives an unauthenticated POST request from a user who matches a Captive Portal rule, it redirects the user to the web portal authentication page and does not record the POST data. After successful authentication, the original POST data must be input again.

**Note**

If the requested URL is configured for tunneling or bypass, no user authentication is performed.

When a rule is added with the Captive Portal option enabled, users are reminded that they can customize the pre-defined web portal page. Go to the new Captive Portal Page Customization tab of Configure > Security > Access Control. Edit the text and HTML to suit your needs. For example, you may want to include your company logo in place of the Websense logo.

**Customizing the web portal page**

The web portal page is an HTML form that is presented to the user for interactive authentication.

Default contents are provided on the Captive Portal Page Customization tab of Configure > Security > Access Control. It is recommended that you customize the form to convey to users who see it that this logon portal is part of your network and organization. For example, you might:

- Replace the Websense logo with your organization’s logo. To do that:
  - Edit the src tag and replace the png file name with your company logo file.
  - Copy your png file to /opt/WCG/config/ui_files/images.
- Include text to explain why the user is seeing this page

The form must be a valid HTML document, defined with valid HTML syntax.

The following variables are used in the document to ensure that it is delivered to the users properly. It is recommended that you do not change their placement or usage.

- %P is replaced with the protocol of the current transaction
- %h is replaced with “redirect_host:8080”
- %u is replaced with the URL request for the portal page
- `$DOMIAN` is replaced with the basic authentication domain defined in the configuration variable `proxy.config.proxy.authenticate.basic.realm`. (See *Authentication basic realm* for more information.)

When you have entered all of the syntax, click **Preview** to preview the page you have created. When you are happy with the way the portal page looks, click **Apply** to save the content to a file. If you want to return to the default, pre-defined portal page syntax, click **Restore to Default Page**.

The customized Captive Portal page is saved to **auth_form.html**, which is stored in `/opt/WCG/config`. In addition, css and image files can be used to define the portal page. CSS files must be stored in `/opt/WCG/config/ui_files` and image files must be store in `/opt/WCG/config/ui_files/images`, by default.

---

**Note**

The css and image files also reside in `/opt/WCG/ui/configure/auth_form` and `/opt/WCG/ui/configure/auth_form/images`, respectively, for use by the **Preview** feature. Copy any new files to those directories to use **Preview**.

---

Add a variable to `records.config` to use a different name for the saved Captive Portal page or store the css and image files in a different directory.

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.auth.form_filename</code></td>
<td>STRING</td>
<td><code>auth_form.html</code></td>
<td>Specifies the file that defines the Captive Portal authentication page. Changing this filename is not recommended.</td>
</tr>
<tr>
<td><code>proxy.config.internal.file.path</code></td>
<td>STRING</td>
<td><code>/config/ui_files</code></td>
<td>Specifies the location of any css and image files used to define the Captive Portal authentication page. The full default path is <code>/opt/WCG/config/ui_files/images</code>. Image files are located in an <code>images</code> sub-directory.</td>
</tr>
</tbody>
</table>

---

**Troubleshooting authentication rules**

In rule-based authentication, problems often present as:

- Users are *not* challenged for credentials when a challenge is expected
- Users *are* challenged for credentials when no challenge is expected
- User authentication is performed against the wrong domain
These problems occur in one of the following phases of user authentication processing:

- General user authentication logic (outlined below)
- Rule definition and matching
- User authentication protocol processing (IWA, NTLM, LDAP; for IWA troubleshooting, see Troubleshooting Integrated Windows Authentication.)

**Rule-based authentication logic**

Rule-based authentication applies the following logic:

1. The rules in `filter.config` are checked and applied. This action occurs first in every type of Content Gateway user authentication. If a filtering rule is matched, the rule is applied and user authentication processing stops. See Filtering Rules, page 183.

2. If no filtering rule matches, user authentication rule matching is performed.
   a. The requestor’s IP address is checked, top-down, against the rule set.
   b. If the IP address matches a rule, the source port is checked.
   c. If the IP address matches a rule, the User-Agent value is checked.
   d. The first rule matched is applied. **If no rule matches, no authentication is attempted.**

3. If a rule is matched, the specified authentication protocol is applied against the specified domain. All rule configuration details are applied.

4. If the user is authenticated, the request proceeds or is denied per the assigned policy.

5. The transaction is logged.

To see how the logic is applied in a running environment, you can temporarily enable user authentication debug output. Among other details, the debug output shows the parsing of rules and matching. See Enabling and disabling user authentication debug output.

**Troubleshooting**

When rule-based authentication doesn’t produce the expected results, it is recommended that you troubleshoot the problem in the following order:

1. **Check Network Address Translation (NAT)**
   Confirm that there is no unexpected IP address NAT. Network address translation has the result that the original source IP address is changed to another address before user authentication is performed. In the Content Gateway manager, go to Configure > Networking > ARM > General and examine the rules in `ipnat.config`. Addresses can also be NATed by other devices in the network, such as downstream proxies or firewalls.

2. **Check the rules in filter.config**
   Confirm that there is no unexpected matching of a `filter.config` rule. Among other purposes, filter.config rules can be used to bypass user authentication. See Filtering Rules.
3. **Check rule matching**
   Using the IP address of a user who is or is not being challenged as expected, walk through each rule, top to bottom, examining the settings to find the first match. Be meticulous in your analysis. A common problem is that the IP address falls within a too-broad IP address range.
   
   If the rule uses an alias, confirm that the alias is present in the User Service of the primary domain controller.
   
   For explicit clients configured to send traffic to a specific port, check both the rule and the configuration of the client’s browser.

4. **Check the domain**
   If you are getting the match you expect, verify that the domain is reachable and that the user is a member of the domain. If yes, troubleshoot the problem at the authentication protocol level. For IWA, see *Troubleshooting Integrated Windows Authentication*.

5. **When Content Gateway is in a proxy chain**
   If Content Gateway is a member of a proxy chain, verify that X-Forwarded-For headers are sent by the downstream proxy and read by Content Gateway.
   
   - Use a packet sniffer to inspect inbound packets from the downstream proxy. Look for properly formed X-Forwarded-For headers.
   
   - In the Content Gateway manager, go to **Configure > My Proxy > Basic**, scroll to the bottom of the page and verify that **Read authentication from child proxy** is enabled. If it’s not, select **On**, click **Apply**, and then restart Content Gateway.

**Enabling and disabling user authentication debug output**

---

**Warning**

Debug output should not be left enabled. Debug output slows proxy performance and can fill the file system with log output.

---

Debug log information is written to: `/opt/WCG/logs/content_gateway.out`

To enable user authentication debug information, edit: `/opt/WCG/config/records.config`

```
(root)# vi /opt/WCG/config/records.config
```

Find and modify the following parameters and assign values as shown:

```
CONFIG proxy.config.diags.debug.enabled INT 1
CONFIG proxy.config.diags.debug.tags STRING
http_xauth.* | auth_* | winauth.* | ldap.* | ntlm.*
```

Save and close the file. Force Content Gateway to reread the file with the command:

```
(root)# /opt/WCG/bin/content_line -x
```
Follow the flow of debug information with the `tail -f` command:

```bash
(root)# tail -f /opt/WCG/logs/content_gateway.out
```

Use `Ctrl+C` to terminate the command.

When you have collected the debug output you want (after one or several user authentication processes is complete), disable debug output by editing `records.config` and modifying the parameter value as shown.

```bash
(root)# CONFIG proxy.config.diags.debug.enabled INT 0
```

Save and close the file. Force Content Gateway to reread the file with the command:

```bash
(root)# /opt/WCG/bin/content_line -x
```

**Mac and iPhone/iPad authentication**

TRITON AP-WEB solutions can be used to authenticate or identify Mac and iPhone/iPad users for user- or group-based filtering.

For Mac computers, see:

- Authentication for Mac computers
  - Enabling transparent identification of Mac users with DC Agent
  - Authenticating Mac users with Content Gateway
    - Typical steps for joining a Mac to an Active Directory domain

For iPhones/iPads, see:

- Authentication for iPhones and iPads

For a list of Frequently Asked Questions regarding Mac and iPhone/iPad authentication, see [How do I use Websense Web Security solutions to authenticate or identify Mac users for user- or group-based filtering?](#)

**Authentication for Mac computers**

TRITON AP-WEB solutions can be used to authenticate or identify Mac users for user- or group-based filtering. These restriction apply:

- Authentication and identification require that users belong to an Active Directory.
- Protocol block messages cannot be displayed on Macs.

If your organization uses DC Agent for transparent user identification, see *Enabling transparent identification of Mac users with DC Agent*.

If your organization uses Logon Agent for transparent user identification, see [Deploying the logon application for Mac clients](#).

If your organization uses Content Gateway to authenticate users, see *Authenticating Mac users with Content Gateway*. 
Manual (prompted) authentication can also be used to enable user and group-based filtering of Mac users.

**Enabling transparent identification of Mac users with DC Agent**

In order for DC Agent to identify the user on a Mac workstation, the Mac must mount a file share on the domain controller. This can be done by configuring the Mac to use a file share on the domain controller machine as the user’s home directory, or by mounting another share with the domain controller.

**Note**

If the Mac only logs to the domain without mounting a file share, it will not be visible to DC Agent.

Configuration summary:

- Ensure that each participating Mac user is a member of a common Active Directory. See your Active Directory documentation.
- Create a home folder for each Mac user, and make sure that it is accessible to the user. See the first paragraph of this section.

When the user logs on to the properly configured Mac OS X system, the Mac mounts a network directory as the user’s home directory, the DC Agent user map is populated, and user and group-based policies can be applied to user requests. When requests are blocked, browser-based block pages are displayed normally.

**Authenticating Mac users with Content Gateway**

Using the Integrated Windows Authentication (IWA) feature of Content Gateway, Mac users can be transparently authenticated when the user is a member of an Active Directory domain and the Mac computer is joined to the Active Directory domain. For more information see [Integrated Windows Authentication](#).

Configuration summary:

- Ensure that each Mac computer is joined to the Active Directory domain. See [Typical steps for joining a Mac to an Active Directory domain](#).
- Ensure that each participating Mac user is a member of a common Active Directory. See your Active Directory documentation.
- Ensure that Content Gateway is joined to the Active Directory domain.
  - If Content Gateway is not configured for IWA, see [Integrated Windows Authentication](#) and apply the configuration instructions.
  - If Content Gateway is already configured for IWA and your Mac users belong to the currently joined domain, there is nothing to do.
  - If Content Gateway is already configured for IWA and your Mac users belong to a different Active Directory domain, use the Rule-Based Authentication feature. See [Rule-Based Authentication](#) and follow the configuration instructions.
When Content Gateway is an explicit proxy, configure participating Mac systems and browsers to send HTTP, HTTPS, and FTP requests to the Fully Qualified Domain Name (FQDN) of Content Gateway. Alternatively, specify the IP address of Content Gateway if NTLM is adequate.

If Content Gateway is a transparent proxy, no additional Mac system or browser configuration is required.

**Important**

Safari users may be prompted for credentials the first time they open a browser. The user should enter their credentials and check the “Remember password in keychain” check box.

FireFox users may receive an “Proxy Authentication Required” error message. This is a known issue in FireFox (http://support.mozilla.org/en-US/questions/926378) and is easily corrected by changing the browser configuration. In `About:Config` set the following options to `false`:

- network.automatic-ntlm-auth.allow-proxies
- network.negotiate-auth.allow-proxies

**Typical steps for joining a Mac to an Active Directory domain**

1. Using an account with Administrator privileges, log on to the Mac computer that you want to join to an Active Directory domain.

2. Open the **Directory Utility**. On OS X 10.6 (Snow Leopard), go to: `/System/Library/CoreServices`

3. If necessary, click the padlock icon and enter your password to unlock the Directory Utility.
4. Select the box next to **Active Directory** to enable Active Directory support.

![Directory Utility](image)

5. Highlight Active Directory and click on the Pencil icon to configure the Active Directory connection.

6. Under **Domain**, enter the Fully Qualified Domain Name (FQDN).

7. Under **Computer ID**, enter the computer name.

![Active Directory Settings](image)

8. Click **Bind**. You are prompted for network credentials and a computer OU. Enter your OU admin account and password, and the computer OU location. For example:

   `ou=computers,ou=orgunits,dc=ad,dc=example,dc=com`

   Your machine will be bound to the specified Active Directory.

9. Click **Apply** in the Directory Utility to save your changes and restart the machine.
Authentication for iPhones and iPads

Proxy-based user authentication is supported by the Content Gateway (proxy) component of TRITON AP-WEB, resulting in user- or group-based filtering.

User identification via DC Agent is not supported and, therefore, there is no user- or group-based filtering solution with Web Filter & Security or TRITON AP-WEB. Filtering can be provided to those devices based on IP address or network range.

Content Gateway user authentication has the following features and restrictions:

- Works with the authentication method configured in Content Gateway. Users must belong to the associated user directory.
- Supports the Safari browser. Other browsers may not work as expected.
- Transparent authentication is not supported. The user is always prompted for credentials.
- Works in transparent and explicit Content Gateway deployments.
- Many iPhone and iPad apps do not work well with Content Gateway (or any Web proxy) because they are not well programmed to handle proxy user authentication.
Explicit proxy settings can be configured in the iOS Network settings area.
Websense Content Gateway keeps 3 types of log files:

- **System log files** record system information, which includes messages about the state of Content Gateway and any errors or warnings that it produces. This information might include a note that event log files were rolled, a warning that cluster communication timed out, or an error indicating that Content Gateway was restarted. (Content Gateway posts alarms for error conditions in the Content Gateway manager; see *Working with alarms*, page 121, for details.)

All system information messages are logged with the system-wide logging facility `syslog` under the daemon facility. The `syslog.conf` configuration file (stored in the `/etc` directory) specifies where these messages are logged. A typical location is `/var/log/messages`.

The `syslog` process works on a system-wide basis, so it is the single repository for messages from all Content Gateway processes, including `content_gateway`, `content_manager`, and `content_cop`.

Each log entry in the log contains information about the date and time the error was logged, the hostname of the proxy server that reported the error, and a description of the error or warning.

See *Websense Content Gateway error messages*, page 499, for a list of the system information messages that Content Gateway logs.
Working With Log Files

- Error log files record information about why a transaction was in error.
- Event log files (also called access log files) record information about the state of each transaction that Content Gateway processes.

Content Gateway creates both error and event log files and records system information in system log files. You can disable event logging and/or error logging. It is recommended that you log errors only or disable logging during peak usage hours.

- On the Configure > Subsystems > Logging tab, select one of the following options: Log Transactions and Errors, Log Transactions Only, Log Errors Only, or Disabled.

Event log files

Event log files record information about every request that Websense Content Gateway processes. By analyzing the log files, you can determine how many people use the proxy, how much information each person requested, what pages are most popular, and so on.

Content Gateway supports several standard log file formats, such as Squid and Netscape, and user-defined custom formats. You can analyze the standard format log files with off-the-shelf analysis packages. To help with log file analysis, you can separate log files so that they contain information specific to protocol or hosts. You can also configure Content Gateway to roll log files automatically at specific intervals during the day.

The following sections describe how to:

- Manage your event log files
  You can choose a central location for storing log files, set how much disk space to use for log files, and set how and when to roll log files. See Managing event log files, page 245.

- Choose different event log file formats
  You can choose which standard log file formats you want to use for traffic analysis (for example, Squid or Netscape). Alternatively, you can use the Content Gateway custom format, which is XML-based and enables you to institute more control over the type of information recorded in log files. See Event log file formats, page 247.

- Roll event log files automatically
  You can configure Content Gateway to roll event log files at specific intervals during the day so that you can identify and manipulate log files that are no longer active. See Rolling event log files, page 253.

- Separate log files according to hosts
  You can configure the proxy to create separate log files for different protocols based on the host. See Splitting event log files, page 256.
Working With Log Files

- Collate log files from different nodes
  
  You can designate one or more nodes on the network to serve as log collation servers. These servers, which might either be stand-alone or part of Content Gateway, enable you to keep all logged information in well-defined locations. See Collating event log files, page 258.

- View statistics about the logging system
  
  Content Gateway provides statistics about the logging system. You can access the statistics through the Content Gateway manager or through the command line interface. See Viewing logging statistics, page 261.

- View log files
  
  You can view the system, event, and error log files that Content Gateway creates. You can view an entire log file, a specified last number of lines in the log file, or all lines that contain a specified string.

- Interpret log file entries for the standard log file formats. See Example event log file entries, page 263.

Managing event log files

You can manage your event log files and control where they are located, how much space they can consume, and how low disk space in the logging directory is handled.

Choosing the logging directory

By default, Content Gateway writes all event log files in the /opt/WCG/logs directory, which is a subdirectory of the directory where you installed Content Gateway. To use a different directory, see Setting log file management options, page 246.

Controlling logging space

You can control the amount of disk space that the logging directory can consume. This allows the system to operate smoothly within a specified space window for a long period of time.

After you establish a space limit, Content Gateway continues to monitor the space in the logging directory. When the free space dwindles to the headroom limit (see Setting log file management options, page 246), Content Gateway enters a low space state and takes the following actions:

- If the autodelete option (discussed in Rolling event log files, page 253) is enabled, Content Gateway identifies previously rolled log files (log files with a .old extension) and starts deleting files one by one—beginning with the oldest file—until it emerges from the low state. Content Gateway logs a record of all files it deletes in the system error log.
If the autodelete option is disabled or there are not enough old log files to delete for the system to emerge from its low space state, Content Gateway issues a warning and continues logging until space is exhausted. Content Gateway resumes event logging when enough space becomes available for it to exit its low space state. You can make space available by removing files from the logging directory or by increasing the logging space limit.

You can run a cron script in conjunction with Content Gateway to automatically remove old log files from the logging directory (before Content Gateway enters the low space state) and relocate them to a temporary partition. Once the files are relocated, you can run log analysis scripts on them, and then you can compress the logs and move them to an archive location or delete them.

### Setting log file management options

1. Navigate to Configure > Subsystems > Logging.
2. In the Log Directory field, enter the path to the directory in which you want to store event log files. The default directory is /opt/WCG/logs, a subdirectory of the Content Gateway installation directory.

   ![Note]
   The log directory you specify must already exist and must be /opt/WCG/logs or a subdirectory of it.
   The Websense user must have read/write permissions for the directory storing the log files.

3. In the Limit field of the Log Space area, enter the maximum amount of space you want to allocate to the logging directory.

   When Content Gateway is on a V-series appliance, the size is set to 5120 (5 GB) and cannot be changed.
   When Content Gateway is installed on a stand-alone server, the default size is 20480 (20 GB) and the size is configurable.

   ![Note]
   All files in the logging directory contribute to the space used, even if they are not log files.

4. In the Headroom field, enter the tolerance for the log space limit. The default value is 100 MB.

   If the Auto-Delete Rolled Files option is enabled in the Log Rolling section, autodeletion is triggered when the amount of free space available in the logging directory is less than the headroom. For information about log file rolling, see Rolling event log files, page 253.

5. Click Apply.
Event log file formats

Websense Content Gateway supports the following log file formats:

- **Standard formats**, such as Squid or Netscape (see *Using standard formats*, page 247)
- the Content Gateway custom format (see *Custom format*, page 248)

In addition to the standard and custom log file format, you must choose whether to save log files in **binary** or **ASCII**. See *Choosing binary or ASCII*, page 251.

---

**Important**

Event log files consume a large amount of disk space. Creating log entries in multiple formats at the same time can consume disk resources very quickly and affect proxy performance.

---

**Important**

When IPv6 is enabled, Event log entries are normalized to IPv6 format.

For example, “10.10.41.200” is logged as “::ffff:10.10.41.200”.

To filter on a client at “10.10.41.200” in a custom log, use:

```xml
<LogFilter>
 <Name = "IPv6_Test_Machine"/>
 <Condition = "chi MATCH ::ffff:10.10.41.200"/>
 <Action = "ACCEPT"/>
</LogFilter>
```

---

Using standard formats

The standard log formats include Squid, Netscape Common, Netscape Extended, and Netscape Extended-2.

The standard log file formats can be analyzed with a wide variety of off-the-shelf log-analysis packages. You should use one of the standard event log formats unless you need information that these formats do not provide. See *Custom format*, page 248.

By default, Content Gateway is configured to use the Netscape Extended log file format only.
Setting standard log file format options

1. Navigate to **Configure > Subsystems > Logging > Formats**.
2. Enable the format you want to use.
3. Select the log file type (ASCII or binary).
4. In the **Filename** field, enter the name you want to use for your event log files.
5. In the **Header** field, enter a text header that appears at the top of the event log files. Leave this field blank if you do not want to use a text header.
6. Click **Apply**.
7. Click **Restart** on **Configure > My Proxy > Basic > General**.

**Custom format**

The XML-based custom log format is more flexible than the standard log file formats, giving you more control over the type of information in your log files. Create a custom log format if you need data for analysis that is not available in the standard formats. You can decide what information to record for each Content Gateway transaction and create filters to define which transactions to log.

The heart of the custom logging feature is an XML-based logging configuration file (**logs_xml.config**) that enables you to create modular descriptions of logging objects. The **logs_xml.config** file uses three types of objects to create custom log files:

- The **LogFormat** defines the content of the log file using printf-style format strings.
- The **LogFilter** defines a filter so that you include or exclude certain information from the log file.
- The **LogObject** specifies all the information needed to produce a log file. For example:
  - The name of the log file (required).
  - The format to be used (required). This can be a standard format (Squid or Netscape) or a previously defined custom format (a previously defined **LogFormat** object).
  - The file mode (ASCII, Binary, or ASCII_PIPE). The default is ASCII.

The ASCII_PIPE mode writes log entries to a UNIX named pipe (a buffer in memory). Other processes can then read the data using standard I/O functions. The advantage of using this option is that Content Gateway does not have to write to disk, freeing disk space and bandwidth for other tasks.

**Note**

When the buffer is full, Content Gateway drops log entries and issues an error message indicating how many entries were dropped. Content Gateway writes only complete log entries to the pipe; therefore, only full records are dropped.
- Any filters you want to use (previously defined `LogFilter` objects).
- The collation servers that are to receive the log files.
- The protocols you want to log (if the protocols tag is used, Content Gateway logs only transactions from the protocols listed; otherwise, all transactions for all protocols are logged).
- The origin servers you want to log (if the servers tag is used, Content Gateway logs only transactions for the origin servers listed; otherwise, transactions for all origin servers are logged).
- The header text you want the log files to contain. The header text appears at the beginning of the log file, just before the first record.
- The log file rolling options.

---

**Note**

To generate a custom log format, you must specify at least one `LogObject` definition. One log file is produced for each `LogObject` definition. You can create a custom log format in the Content Gateway manager or by editing a configuration file.

1. On **Configure > Subsystems > Logging > Custom**, enable the **Custom Logging** option.
2. The **Custom Log File Definitions** area displays the `logs_xml.config` file. Add `LogFormat`, `LogFilter`, and `LogObject` specifications to the configuration file.
   For detailed information about the `logs_xml.config` file and associated object specifications, see `logs_xml.config`, page 410.
3. Click **Apply**.

### Creating summary log files

Content Gateway performs several hundred operations per second; therefore, event log files can grow quite large. Using SQL-like aggregate operators, you can configure Content Gateway to create summary log files that summarize a set of log entries over a specified period of time. This can reduce the size of the log files generated.

You generate a summary log file by creating a `LogFormat` object in the XML-based logging configuration file (`logs_xml.config`) using the following SQL-like aggregate operators:

- `COUNT`
- `SUM`
- `AVERAGE`
- `FIRST`
- `LAST`
You can apply each of these operators to specific fields, requesting it to operate over a specified interval.

Summary log files represent a trade-off between convenience and information granularity. Since you must specify a time interval during which only a single record is generated, you can lose information. If you want the convenience of summary logs and need the detail of a conventional log file, consider creating and enabling two custom log formats—one using aggregate operators and the other not using aggregate operators.

To create a summary log file format:

1. Navigate to Configure > Subsystems > Logging > Custom to display the logs_xml.config file.
2. Define the format of the log file as follows:

   ```
 <LogFormat>
 <Name = "summary"/>
 <Format = "%<operator(field)> : %<operator(field)>"/>
 <Interval = "n"/>
 </Format>
   ```

   where:

   - `operator` is one of the five aggregate operators (COUNT, SUM, AVERAGE, FIRST, LAST). You can specify more than one operator in the format line.
   - `field` is the logging field that you want to aggregate.
   - `n` is the interval in seconds between summary log entries.

   For more information, see logs_xml.config, page 410.

   For example, the following format generates one entry every 10 seconds, with each entry summarizing the time stamp of the last entry of the interval, a count of the number of entries seen within that 10-second interval, and the sum of all bytes sent to the client:

   ```
 <LogFormat>
 <Name = "summary"/>
 <Format = "%<LAST(cqts)> : %<COUNT(*)> : %<SUM(psql)>"/>
 <Interval = "10"/>
 </Format>
   ```

### Important

You cannot create a format specification that contains both aggregate operators and regular fields. For example, the following specification would be invalid:

```
<Format = "%<LAST(cqts)> : %<COUNT(*)> : %<SUM(psql)> : %<cqu>"/>
```
3. Define a LogObject that uses this format.
4. Click Apply.

Applying logs_xml.config file changes to all nodes in a cluster

Help | Content Gateway | Version 8.1.x

After modifying the logs_xml.config file on one Content Gateway node, enter the following command from the Content Gateway bin directory (/opt/WCG/bin):

content_line -x

Content Gateway applies the changes to all nodes in the cluster. The changes take effect immediately.

Choosing binary or ASCII

Help | Content Gateway | Version 8.1.x

You can configure Content Gateway to create event log files in either of the following:

- **ASCII**: these files can be processed using standard, off-the-shelf log-analysis tools. However, Content Gateway must perform additional processing to create the files in ASCII, resulting in an increase in overhead. Also, ASCII files tend to be larger than the equivalent binary files. ASCII log files have a .log filename extension by default.

- **Binary**: these files generate lower system overhead, as well as generally occupying less space on the disk, depending on the type of information being logged. You must, however, use a converter application before you can read or analyze these files using standard tools. Binary log files use a .blog filename extension by default.

While binary log files typically require less disk space, this is not always the case. For example, the value 0 (zero) requires only one byte to store in ASCII but requires four bytes when stored as a binary integer. If you define a custom format that logs IP addresses, a binary log file would require only four bytes of storage per 32-bit address. However, the same IP address stored in dot notation would require around 15 characters (bytes) in an ASCII log file.

For standard log formats, you select Binary or ASCII on the Configure > Subsystems > Logging > Formats tab in the Content Gateway manager. See Setting standard log file format options, page 248. For the custom log format, you specify...
ASCII or Binary mode in the LogObject. Refer to Custom format, page 248.

---

**Note**
For custom log files, in addition to the ASCII and Binary options, you can also write log entries to a UNIX named pipe (a buffer in memory). Other processes can then read the data using standard I/O functions. The advantage of using this option is that Content Gateway does not have to write to disk, freeing disk space and bandwidth for other tasks. In addition, writing to a pipe does not stop when logging space is exhausted because the pipe does not use disk space. See logs_xml.config, page 410, for more information about the ASCII_PIPE option.

---

Before selecting ASCII versus binary for your log files, consider the type of data that will be logged. Try logging for one day using ASCII and then one day using binary. Assuming that the number of requests is roughly the same for both days, you can calculate a rough metric comparing the two formats.

### Using logcat to convert binary logs to ASCII

You must convert a binary log file to ASCII before you can analyze it using standard tools.

1. Change to the directory containing the binary log file.
2. Make sure that the logcat utility is in your path.
3. Enter the following command:
   ```
 logcat options input_filename...
   ```
The following table describes the command-line options.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-o output_file</code></td>
<td>Specifies where the command output is directed.</td>
</tr>
</tbody>
</table>
| `-a`          | Automatically generates the output filename based on the input filename. If the input is from `stdin`, this option is ignored. For example:  
  ```
 logcat -a squid-1.blog squid-2.blog squid-3.blog
  ```
generates:  
  ```
 squid-1.log, squid-2.log, squid-3.log
  ```
| `-S`          | Attempts to transform the input to Squid format, if possible. |
| `-C`          | Attempts to transform the input to Netscape Common format, if possible. |
| `-E`          | Attempts to transform the input to Netscape Extended format, if possible. |
| `-2`          | Attempt to transform the input to Netscape Extended-2 format, if possible. |

**Note**

Use only one of the following options at any given time: `-S`, `-C`, `-E`, or `-2`.

If no input files are specified, `logcat` reads from the standard input (`stdin`). If you do not specify an output file, `logcat` writes to the standard output (`stdout`). For example, to convert a binary log file to an ASCII file, you can use the `logcat` command with either of the following options:

- `logcat binary_file > ascii_file`
- `logcat -o ascii_file binary_file`

The binary log file is not modified by this command.

---

**Rolling event log files**

Websense Content Gateway provides automatic log file rolling. This means that at specific intervals during the day, Content Gateway closes its current set of log files and opens new log files.

Log file rolling offers the following benefits:

- It defines an interval over which log analysis can be performed.
It keeps any single log file from becoming too large and assists in keeping the logging system within the specified space limits.

It provides an easy way to identify files that are no longer being used so that an automated script can clean the logging directory and run log analysis programs.

You should roll log files several times a day. Rolling every six hours is a good guideline to follow.

**Rolled log filename format**

Websense Content Gateway provides a consistent name format for rolled log files that allows you to identify log files.

When Content Gateway rolls a log file, it saves and closes the old file and starts a new file. Content Gateway renames the old file to include the following information:

- The format of the file (for example, `squid.log`).
- The hostname of the Content Gateway server that generated the log file.
- Two timestamps separated by a hyphen (`-`). The first time stamp is a lower bound for the time stamp of the first record in the log file. The lower bound is the time when the new buffer for log records is created. Under low load, the first time stamp in the filename can be different from the timestamp of the first entry. Under normal load, the first time stamp in the filename and the time stamp of the first entry are similar.
  - The second time stamp is an upper bound for the time stamp of the last record in the log file (this is normally the rolling time).
- The suffix `.old`, which makes it easy for automated scripts to find rolled log files.

The timestamps have the following format:

```
%Y%M%D.%H%M%S-%Y%M%D.%H%M%S
```

The following table describes the format:

<table>
<thead>
<tr>
<th>Code</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>%Y</td>
<td>The year in four-digit format</td>
<td>2000</td>
</tr>
<tr>
<td>%M</td>
<td>The month in two-digit format, from 01-12</td>
<td>07</td>
</tr>
<tr>
<td>%D</td>
<td>The day in two-digit format, from 01-31</td>
<td>19</td>
</tr>
<tr>
<td>%H</td>
<td>The hour in two-digit format, from 00-23</td>
<td>21</td>
</tr>
<tr>
<td>%M</td>
<td>The minute in two-digit format, from 00-59</td>
<td>52</td>
</tr>
<tr>
<td>%S</td>
<td>The second in two-digit format, from 00-59</td>
<td>36</td>
</tr>
</tbody>
</table>

The following is an example of a rolled log filename:
squid.log.mymachine.20000912.12h00m00s-20000913.12h00m00s.old

In this example, the file is squid log format and the host machine is mymachine. The first time stamp indicates a date and time of year 2000, month September, and day 12 at 12:00 noon. The second time stamp indicates a date and time of year 2000, month September, and day 13 at 12:00 noon. At the end, the file has a .old suffix.

The logging system buffers log records before writing them to disk. When a log file is rolled, the log buffer might be partially full. If so, the first entry in the new log file will have a time stamp earlier than the time of rolling. When the new log file is rolled, its first time stamp will be a lower bound for the time stamp of the first entry. For example, suppose logs are rolled every three hours, and the first rolled log file is:

   squid.log.mymachine.19980912.12h00m00s-19980912.15h00m00s.old

If the lower bound for the first entry in the log buffer at 3:00:00 is 2:59:47, the next log file, when rolled, will have the following time stamp:

   squid.log.mymachine.19980912.02h59m47s-19980912.06h00m00s.old

The contents of a log file are always between the two timestamps. Log files do not contain overlapping entries, even if successive timestamps appear to overlap.

### Rolling intervals

Log files are rolled at specific intervals relative to a given hour of the day. Two options control when log files are rolled:

- The offset hour, which is an hour between 0 (midnight) and 23
- The rolling interval

Both the offset hour and the rolling interval determine when log file rolling starts. Rolling occurs every rolling interval and at the offset hour.

For example, if the rolling interval is six hours and the offset hour is 0 (midnight), the logs roll at midnight (00:00), 06:00, 12:00, and 18:00 each day. If the rolling interval is 12 hours and the offset hour is 3, logs roll at 03:00 and 15:00 each day.

### Setting log file rolling options

1. Navigate to Configure > Subsystems > Logging > General.
2. In the Log Rolling section, ensure the Log Rolling option is enabled (the default).
3. In the Offset Hour field, enter a specific time each day you want log file rolling to take place. Content Gateway forces the log file to be rolled at the offset hour each day.

   You can enter any hour in the range 0 (midnight) to 23.
4. In the **Interval** field, enter the amount of time Content Gateway enters data in the log files before rotation takes place. The minimum value is 300 seconds (five minutes). The maximum value is 86400 seconds (one day).

**Note**
If you start Content Gateway within a few minutes of the next rolling time, rolling may not occur until the following rolling time.

5. Ensure the **Auto-Delete Rolled Files** option is enabled (the default). This enables auto deletion of rolled log files when available space in the log directory is low. Auto deletion is triggered when the amount of free space available in the log directory is less than the headroom.

6. Click **Apply**.

**Note**
You can fine tune log file rolling settings for a custom log file in the **LogObject** specification in the **logs_xml.config** file. The custom log file uses the rolling settings in its **LogObject**, which override the default settings you specify in the Content Gateway manager or the **records.config** file described above.

### Splitting event log files

By default, Websense Content Gateway uses standard log formats and generates log files that contain HTTP and FTP transactions in the same file. However, you can enable host log splitting if you prefer to log transactions for different origin servers in separate log files.

### HTTP host log splitting

HTTP host log splitting enables you to record HTTP and FTP transactions for different origin servers in separate log files. When HTTP host log splitting is enabled, Content Gateway creates a separate log file for each origin server listed in the **log_hosts.config** file (see *Editing the log_hosts.config file*, page 257).

When HTTP host log splitting is enabled, Content Gateway generates separate log files for HTTP/FTP transactions, based on the origin server.
For example, if the `log_hosts.config` file contains the two origin servers `uni.edu` and `company.com`, and the Squid format is enabled, Content Gateway generates the following log files:

<table>
<thead>
<tr>
<th>Log Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>squid-uni.edu.log</code></td>
<td>All HTTP and FTP transactions for <code>uni.edu</code></td>
</tr>
<tr>
<td><code>squid-company.com.log</code></td>
<td>All HTTP and FTP transactions for <code>company.com</code></td>
</tr>
<tr>
<td><code>squid.log</code></td>
<td>All HTTP and FTP transactions for other hosts</td>
</tr>
</tbody>
</table>

Content Gateway also enables you to create XML-based custom log formats that offer even greater control over log file generation based on protocol and host name. See `Custom format, page 248`.

**Setting log splitting options**

1. Navigate to **Configure > Subsystems > Logging > Splitting**.
2. Enable the **Split Host Logs** option to record all HTTP and FTP transactions for each origin server listed in the `log_hosts.config` file in a separate log file. Disable the **Split Host Logs** option to record all HTTP and FTP transactions for each origin server listed in the `log_hosts.config` file in the same log file.
3. Click **Apply**.

**Editing the log_hosts.config file**
The default **log_hosts.config** file is located in `/opt/WCG/config`. To record HTTP and FTP transactions for different origin servers in separate log files, you must specify each origin server’s hostname on a separate line in the file.

1. Open the **log_hosts.config** file located in `/opt/WCG/config`.
2. Enter the hostname of each origin server on a separate line in the file. For example:
   
   ```
 webserver1
 webserver2
 webserver3
   ```
3. Save and close the file.
4. To apply the changes, run the following command from the Content Gateway bin directory (`/opt/WCG/bin`):
   
   ```
 ./content_line -x
   ```

### Collating event log files

You can use the log file collation feature to keep all logged information in one place. This allows you to analyze Content Gateway as a whole rather than as individual nodes and to use a large disk that might only be located on one of the nodes in a cluster.

Content Gateway collates log files by using one or more nodes as log collation servers and all remaining nodes as log collation clients. When a node generates a buffer of event log entries, it determines whether it is the collation server or a collation client. The collation server node simply writes all log buffers to its local disk, just as it would if log collation were not enabled.
The collation client nodes prepare their log buffers for transfer across the network and send the buffers to the log collation server. When the log collation server receives a log buffer from a client, it writes it to its own log file as if it were generated locally. If log clients cannot contact their log collation server, they write their log buffers to their local disks, into *orphan* log files. Orphan log files require manual collation. Log collation servers can be stand-alone or they can be part of a node running Content Gateway.

**Note**

Log collation can have an impact on network performance. Because all nodes are forwarding their log data buffers to the single collation server, a bottleneck might occur in the network, where the amount of data being sent to a single node in the network exceeds the node’s ability to process it quickly.

**Note**

Collated log files contain time-stamp information for each entry, but entries do not appear in the files in strict chronological order. You can sort collated log files before doing analysis.

### Configuring Content Gateway to be a collation server

1. Navigate to **Configure > Subsystems > Logging > Collation**.
2. In the **Collation Mode** section, enable the **Be A Collation Server** option.
3. In the **Log Collation Port** field, enter the port number used for communication with collation clients. The default port number is 8085.
4. In the **Log Collation Secret** field, enter the password used to validate logging data and prevent the exchange of arbitrary information.

**Note**

All collation clients must use this same secret.

5. Click **Apply**.

**Important**

If you modify the collation port or secret after connections between the collation server and collation clients have been established, you must restart Content Gateway.
Configuring Content Gateway to be a collation client

1. Navigate to Configure > Subsystems > Logging > Collation.
2. In the Collation Mode section, enable the Be a Collation Client option to set the Content Gateway node as a collation client and send the active standard formatted log entries (such as Squid and Netscape) to the log collation server.

Note
To send custom XML-based formatted log entries to the collation server, you must add a log object specification to the logs_xml.config file. See Custom format, page 248.

3. In the To Collation Server field, enter the hostname of the collation server. This could be the Content Gateway collation server or a stand-alone collation server.
4. In the Log Collation Port field, enter the port number used for communication with the collation server. The default port number is 8085.
5. In the Log Collation Secret field, enter the password used to validate logging data and prevent the exchange of arbitrary information. This must be the same secret you set on the collation server.
6. Enable the Log Collation Host Tagged option if you want to preserve the origin of log entries in the collated log files.
7. In the Log Collation Orphan Space field, enter the maximum amount of space (in megabytes) you want to allocate to the logging directory on the collation client for storing orphan log files. (Orphan log files are created when the log collation server cannot be contacted). The default value is 25 MB.
8. Click Apply.

Important
If you modify the collation port or secret after connections between the collation clients and collation server have been established, you must restart Content Gateway.

Using a stand-alone collator

If you do not want the log collation server to be a Content Gateway node, you can install and configure a stand-alone collator (SAC) which can dedicate more of its power to collecting, processing, and writing log files.

Note
The stand-alone collator is currently available for the Linux platform only.
1. Configure your Content Gateway nodes as log collation clients. See Configuring Content Gateway to be a collation client, page 260.

2. Copy the sac binary from the Content Gateway bin directory (/opt/WCG/bin) to the machine serving as the stand-alone collator.

3. Create a directory called config in the directory that contains the sac binary.

4. Create a directory called internal in the config directory you created in Step 3. This directory will be used internally by the stand-alone collator to store lock files.

5. Copy the records.config file (/opt/WCG/config) from a Content Gateway node configured to be a log collation client to the config directory you created in Step 3 on the stand-alone collator.

   The records.config file contains the log collation secret and port you specified when configuring nodes to be collation clients. The collation port and secret must be the same for all collation clients and servers.

6. Open the records.config file on the stand-alone collator and edit the following variable:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.log2.logfile_dir</td>
<td>Specify the directory where you want to store the log files. You can specify an absolute path to the directory or a path relative to the directory from which the sac binary is executed. Note: The directory must already exist on the machine serving as the stand-alone collator.</td>
</tr>
</tbody>
</table>

7. Save and close the file.

8. Enter the following command:

   sac -c config

Viewing logging statistics

Content Gateway generates statistics about the logging system that help you see the following information:

- How many log files (formats) are currently being written.
- The current amount of space being used by the logging directory, which contains all of the event and error logs.
- The number of access events that have been written to log files since Content Gateway installation. This counter represents one entry in one file. If multiple formats are being written, a single event will create multiple event log entries.
Working With Log Files

- The number of access events skipped (because they were filtered out) since Content Gateway installation.
- The number of access events that have been written to the event error log since Content Gateway installation.

You can view the statistics from the Monitor tab in the Content Gateway manager or retrieve them through the command-line interface. See Monitoring Traffic, page 117.

Viewing log files

Help | Content Gateway | Version 8.1.x

Related topics:
- Squid format, page 263
- Netscape examples, page 264

You can view the system, event, and error log files that Content Gateway creates from the Content Gateway manager. You can view an entire log file, a specified last number of lines in the log file, or all lines that contain a specified string.

You can also delete a log file or copy it to your local system.

Note

- You must have the correct user permissions to copy and delete log files.

Note

- Content Gateway displays only the first 1 MB of data in the log file. If the log file you select is larger than 1 MB, Content Gateway truncates the file and displays a warning message indicating that the file is too big.

You can now access log files through the Content Gateway manager.

1. Navigate to Configure > My Proxy > Logs > System.
2. To view, copy, or delete a system log file, go to Step 3.
   - To view, copy, or delete an event or error log file, select the Access tab.
3. In the Log File drop-down list, select the log file you want to view, copy, or delete.
   - Content Gateway lists the system log files logged with the system-wide logging facility syslog under the daemon facility.
Content Gateway lists the event log files located in the directory specified in the Logging Directory field in the Configure > Subsystems > Logging > General tab or by the configuration variable proxy.config.log2.logfile_dir in the records.config file. The default directory is logs in the Content Gateway installation directory.

4. In the Action area, select one of the following options:
   - **Display the selected log file** to view the entire log file. If the file is larger than 1 MB, only the first MB of data is displayed.
   - **Display last lines of the selected file** to view the last lines of the log file. Enter the number of lines you want to view in the field provided.
   - **Display lines that match in the selected log file** to view all the lines in the log file that match a particular string. Enter the string in the field provided.
   - **Remove the selected log file** to delete the selected log file from the Content Gateway system.
   - **Save the selected log file in local filesystem** to save a copy of the selected log file on your local system.

5. Click **Apply**.
   - If you selected to view the log file, Content Gateway displays the file at the end of the page.
   - If you selected to delete the log file, Content Gateway deletes the file. You are not prompted to confirm the deletion.
   - If you selected to save the log file, you are prompted for the location where you want to save the file on your local system.

## Example event log file entries

This section shows examples of a log file entry in each of the standard log formats supported by Content Gateway:

- **Squid format**, page 263
- **Netscape examples**, page 264
- **Netscape Extended format**, page 265
- **Netscape Extended-2 format**, page 265

## Squid format

Help | Content Gateway | Version 8.1.x
The following figure shows a sample log entry in a `squid.log` file. The table below describes each field.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The client request time stamp in Squid format; the time of the client request in seconds since January 1, 1970 UTC (with millisecond resolution).</td>
</tr>
<tr>
<td>2</td>
<td>The time the proxy spent processing the client request; the number of milliseconds between the time that the client established the connection with the proxy and the time that the proxy sent the last byte of the response back to the client.</td>
</tr>
<tr>
<td>3</td>
<td>The IP address of the client’s host machine.</td>
</tr>
<tr>
<td>4</td>
<td>The cache result code; how the cache responded to the request: HIT, MISS, and so on. Cache result codes are described in Cache result codes in Squid- and Netscape-format log files, page 266. The proxy response status code (the HTTP response status code from Content Gateway to client).</td>
</tr>
<tr>
<td>5</td>
<td>The length of the Content Gateway response to the client in bytes, including headers and content.</td>
</tr>
<tr>
<td>6</td>
<td>The client request method: GET, POST, and so on.</td>
</tr>
<tr>
<td>7</td>
<td>The client request canonical URL; blanks and other characters that might not be parsed by log analysis tools are replaced by escape sequences. The escape sequence is a percentage sign followed by the ASCII code number of the replaced character in hex.</td>
</tr>
<tr>
<td>8</td>
<td>The authenticated client’s user name. A hyphen (-) means that no authentication was required.</td>
</tr>
<tr>
<td>9</td>
<td>The proxy hierarchy route; the route Content Gateway used to retrieve the object. The proxy request server name; the name of the server that fulfilled the request. If the request was a cache hit, this field contains a hyphen (-).</td>
</tr>
<tr>
<td>10</td>
<td>The proxy response content type; the object content type taken from the Content Gateway response header.</td>
</tr>
</tbody>
</table>

**Netscape examples**

Help | Content Gateway | Version 8.1.x
Netscape Common format

The following figure shows a sample log entry in a `common.log` file. The table below describes each field.

```
```

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The IP address of the client’s host machine.</td>
</tr>
<tr>
<td>2</td>
<td>This hyphen (-) is always present in Netscape log entries.</td>
</tr>
<tr>
<td>3</td>
<td>The authenticated client user name. A hyphen (-) means no authentication was required.</td>
</tr>
<tr>
<td>4</td>
<td>The date and time of the client’s request, enclosed in brackets.</td>
</tr>
<tr>
<td>5</td>
<td>The request line, enclosed in quotes.</td>
</tr>
<tr>
<td>6</td>
<td>The proxy response status code (HTTP reply code).</td>
</tr>
<tr>
<td>7</td>
<td>The length of the Content Gateway response to the client in bytes.</td>
</tr>
</tbody>
</table>
```

Netscape Extended format

The following figure shows a sample log entry in an `extended.log` file. The table below describes each field.

```
```

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The IP address of the client’s host machine.</td>
</tr>
<tr>
<td>2</td>
<td>This hyphen (-) is always present in Netscape log entries.</td>
</tr>
<tr>
<td>3</td>
<td>The authenticated client user name. A hyphen (-) means no authentication was required.</td>
</tr>
<tr>
<td>4</td>
<td>The date and time of the client’s request, enclosed in brackets.</td>
</tr>
<tr>
<td>5</td>
<td>The request line, enclosed in quotes.</td>
</tr>
<tr>
<td>6</td>
<td>The proxy response status code (HTTP reply code).</td>
</tr>
<tr>
<td>7</td>
<td>The length of the Content Gateway response to the client in bytes.</td>
</tr>
</tbody>
</table>
```

Netscape Extended-2 format

The following figure shows a sample log entry in an `extended2.log` file. The table below describes each field.

```
```

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The IP address of the client’s host machine.</td>
</tr>
<tr>
<td>2</td>
<td>This hyphen (-) is always present in Netscape log entries.</td>
</tr>
<tr>
<td>3</td>
<td>The authenticated client user name. A hyphen (-) means no authentication was required.</td>
</tr>
<tr>
<td>4</td>
<td>The date and time of the client’s request, enclosed in brackets.</td>
</tr>
<tr>
<td>5</td>
<td>The request line, enclosed in quotes.</td>
</tr>
<tr>
<td>6</td>
<td>The proxy response status code (HTTP reply code).</td>
</tr>
<tr>
<td>7</td>
<td>The length of the Content Gateway response to the client in bytes.</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Netscape Extended</strong></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>The origin server’s response status code.</td>
</tr>
<tr>
<td>9</td>
<td>The server response transfer length; the body length in the origin server’s response to the proxy, in bytes.</td>
</tr>
<tr>
<td>10</td>
<td>The client request transfer length; the body length in the client’s request to the proxy, in bytes.</td>
</tr>
<tr>
<td>11</td>
<td>The proxy request transfer length; the body length in the proxy request to the origin server.</td>
</tr>
<tr>
<td>12</td>
<td>The client request header length; the header length in the client’s request to the proxy.</td>
</tr>
<tr>
<td>13</td>
<td>The proxy response header length; the header length in the proxy response to the client.</td>
</tr>
<tr>
<td>14</td>
<td>The proxy request header length; the header length in the proxy request to the origin server.</td>
</tr>
<tr>
<td>15</td>
<td>The server response header length; the header length in the origin server’s response to the proxy.</td>
</tr>
<tr>
<td>16</td>
<td>The time Content Gateway spent processing the client request; the number of seconds between the time that the client established the connection with the proxy and the time that the proxy sent the last byte of the response back to the client.</td>
</tr>
<tr>
<td><strong>Netscape Extended-2</strong></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>The proxy hierarchy route; the route Content Gateway used to retrieve the object.</td>
</tr>
<tr>
<td>18</td>
<td>The client finish status code: FIN if the client request completed successfully or INTR if the client request was interrupted.</td>
</tr>
<tr>
<td>19</td>
<td>The proxy finish status code: FIN if the Content Gateway request to the origin server completed successfully or INTR if the request was interrupted.</td>
</tr>
<tr>
<td>20</td>
<td>The cache result code; how the Content Gateway cache responded to the request: HIT, MISS, and so on. Cache result codes are described in <em>Cache result codes in Squid- and Netscape-format log files</em>, page 266.</td>
</tr>
</tbody>
</table>
Cache result codes in the Squid and Netscape log files:

<table>
<thead>
<tr>
<th>Cache Result Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP_HIT</td>
<td>Indicates that a valid copy of the requested object was in the cache and that the proxy sent the object to the client.</td>
</tr>
<tr>
<td>TCP_MISS</td>
<td>Indicates that the requested object was not in the cache and that the proxy retrieved the object from the origin server or from a parent proxy and sent it to the client.</td>
</tr>
<tr>
<td>TCP_REFRESH_HIT</td>
<td>Indicates that the object was in the cache but was stale. Content Gateway made an if-modified-since request to the origin server and the origin server sent a 304 not-modified response. The proxy sent the cached object to the client.</td>
</tr>
<tr>
<td>TCP_REF_FAIL_HIT</td>
<td>Indicates that the object was in the cache but was stale. Content Gateway made an if-modified-since request to the origin server but the server did not respond. The proxy sent the cached object to the client.</td>
</tr>
<tr>
<td>TCP_REFRESH_MISS</td>
<td>Indicates that the object was in the cache but was stale. Content Gateway made an if-modified-since request to the origin server and the server returned a new object. The proxy served the new object to the client.</td>
</tr>
<tr>
<td>TCP_CLIENT_REFRESH</td>
<td>Indicates that the client issued a request with a no-cache header. The proxy obtained the requested object from the origin server and sent a copy to the client. Content Gateway refreshes any previous copy of the object in the cache.</td>
</tr>
<tr>
<td>TCP_IMS_HIT</td>
<td>Indicates that the client issued an if-modified-since request and the object was in the cache and fresher than the IMS date, or an if-modified-since to the origin server found that the cache object was fresh. The proxy served the cached object to the client.</td>
</tr>
<tr>
<td>TCP_IMS_MISS</td>
<td>Indicates that the client issued an if-modified-since request and the object was either not in cache or was stale in cache. The proxy sent an if-modified-since request to the origin server and received the new object. The proxy sent the updated object to the client.</td>
</tr>
<tr>
<td>TCP_SWAPFAIL</td>
<td>Indicates that the object was in the cache but could not be accessed. The client did not receive the object.</td>
</tr>
<tr>
<td>ERR_CLIENT_ABORT</td>
<td>Indicates that the client disconnected before the complete object was sent.</td>
</tr>
<tr>
<td>ERR_CONNECT_FAIL</td>
<td>Indicates that Content Gateway could not reach the origin server.</td>
</tr>
<tr>
<td>Cache Result Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ERR_DNS_FAIL</td>
<td>Indicates that the Domain Name Server could not resolve the origin server name, or that no Domain Name Server could be reached.</td>
</tr>
<tr>
<td>ERR_INVALID_REQ</td>
<td>Indicates that the client HTTP request was invalid. Content Gateway forwards requests with unknown methods to the origin server.</td>
</tr>
<tr>
<td>ERR_READ_TIMEOUT</td>
<td>Indicates that the origin server did not respond to the Content Gateway request within the timeout interval.</td>
</tr>
<tr>
<td>ERR_PROXY_DENIED</td>
<td>Indicates that client service was denied by access control configuration.</td>
</tr>
<tr>
<td>ERR_UNKNOWN</td>
<td>Indicates that the client connected but subsequently disconnected without sending a request.</td>
</tr>
</tbody>
</table>
This section describes the following statistics accessed on the Content Gateway manager Monitor tab:

- *My Proxy*, page 269
- *Protocols*, page 275
- *Security*, page 277
- *Subsystems*, page 282
- *Networking*, page 284
- *Performance*, page 289
- *SSL*, page 292

**My Proxy**

*My Proxy* statistics are divided into the following categories:

- *Summary*, page 270
- *Node*, page 271
- *Graphs*, page 272
- *Alarms*, page 272
- *Diagnostics*, page 273
## Summary

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Subscription Details</strong></td>
<td></td>
</tr>
<tr>
<td>Feature</td>
<td>Lists available features, such as analytic options, threat detection, and the file sandbox.</td>
</tr>
<tr>
<td>Purchased Status</td>
<td>Indicates if a feature has been purchased.</td>
</tr>
<tr>
<td>Expiration Date</td>
<td>If a feature has been purchased, displays the expiration date of the subscription.</td>
</tr>
<tr>
<td><strong>More Detail</strong></td>
<td></td>
</tr>
<tr>
<td>Subscription key</td>
<td>Displays the subscription key. See <em>Entering your subscription key</em>, page 16.</td>
</tr>
<tr>
<td>Last successful subscription download time</td>
<td>Displays the time of the last successful validation of the subscription key. The check is made once a day.</td>
</tr>
<tr>
<td>Connection status</td>
<td>Displays the Content Gateway connection status to Policy Server, Policy Broker, and Filtering Service.</td>
</tr>
<tr>
<td>Registration status</td>
<td>Displays the Content Gateway registration status with the Forensics Repository.</td>
</tr>
<tr>
<td><strong>Scanning Data Files</strong></td>
<td></td>
</tr>
<tr>
<td>Engine Name</td>
<td>Displays the name of each scanning engine.</td>
</tr>
<tr>
<td>Engine Version</td>
<td>Displays the version number of the scanning engine.</td>
</tr>
<tr>
<td>Data File Version</td>
<td>Displays the version number of the data file currently in use by the scanning engine.</td>
</tr>
<tr>
<td>Last update</td>
<td>Displays the time and date when Content Gateway last successfully loaded analytics data files, settings, and policies.</td>
</tr>
<tr>
<td>Last time Content Gateway loaded data</td>
<td>Displays the time and date when Content Gateway last successfully loaded databases, settings, and policies.</td>
</tr>
<tr>
<td>Last time Content Gateway checked for updates</td>
<td>Displays the time and date when Content Gateway last successfully communicated with the Websense download server to check for data file updates.</td>
</tr>
<tr>
<td><strong>Node Details</strong></td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>Name of the Content Gateway node or cluster.</td>
</tr>
<tr>
<td>On/Off</td>
<td>Indicates if the proxy and manager services are running.</td>
</tr>
<tr>
<td>Objects Served</td>
<td>The total number of objects served by the node.</td>
</tr>
<tr>
<td>Ops/Sec</td>
<td>The number of operations per second processed by the node.</td>
</tr>
<tr>
<td>Hit Rate</td>
<td>The percentage of HTTP requests served from the cache, averaged over the past 10 seconds.</td>
</tr>
</tbody>
</table>
### Statistics

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (Mbit/sec)</td>
<td>The number of megabits per second passing through the node (and cluster). The proxy updates the throughput statistic after it transfers an entire object. For larger files, the byte count increases sharply at the end of a transfer. The complete number of bytes transferred is attributed to the last 10-second interval, although it can take several minutes to transfer the object. This transient inaccuracy is more noticeable with a light load.</td>
</tr>
<tr>
<td>HTTP Hit (ms)</td>
<td>The amount of time it takes for an HTTP object that is fresh in the cache to be served to the client.</td>
</tr>
<tr>
<td>HTTP Miss (ms)</td>
<td>The amount of time it takes for an HTTP object that is not in the cache or is stale to be served to the client.</td>
</tr>
<tr>
<td>cache hit rate</td>
<td>The percentage of HTTP requests served from the cache, averaged over the past 10 seconds. This value is refreshed every 10 seconds.</td>
</tr>
<tr>
<td>errors</td>
<td>The percentage of requests that end in early hangups.</td>
</tr>
<tr>
<td>aborts</td>
<td>The percentage of aborted requests.</td>
</tr>
<tr>
<td>active clients</td>
<td>The current number of open client connections.</td>
</tr>
<tr>
<td>active servers</td>
<td>The current number of open origin server connections.</td>
</tr>
<tr>
<td>node IP address</td>
<td>The IP address assigned to the node. If virtual IP addressing is enabled, several virtual IP addresses could be assigned to this node.</td>
</tr>
<tr>
<td>cache free space</td>
<td>The amount of free space in the cache.</td>
</tr>
<tr>
<td>HostDB hit rate</td>
<td>The ratio of host database hits to total host database lookups, averaged over a 10-second period.</td>
</tr>
</tbody>
</table>

---

### Node

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Indicates if Content Gateway is running on this node (active or inactive).</td>
</tr>
<tr>
<td>Up Since</td>
<td>Date and time Content Gateway was started.</td>
</tr>
<tr>
<td>Clustering</td>
<td>Indicates if clustering is on or off on this node.</td>
</tr>
</tbody>
</table>

---

Help | Content Gateway | Version 8.1.x
The Graphs page displays the same statistics listed on the Node page (cache performance, current connections and transfers, network, and name resolution) but in graphical format. You can choose the statistics you want to present in a graph. See Viewing statistics, page 117.

### Important

The graph is displayed in your browser using a Java applet. You should have the latest version of Java installed on your PC (at least version 1.7). To validate your access to Content Gateway statistics, you will be prompted for Content Gateway logon credentials.
Websense Content Gateway signals an alarm when it detects a problem (for example, if the space allocated to event logs is full or if Content Gateway cannot write to a configuration file) and displays a description of the alarm in the alarm message window. In addition, the **Alarm! [pending]** bar at the top of the Content Gateway manager display indicates when alarms are detected and how many alarms exist.

After you have read an alarm message, click **Clear** in the alarm message window to dismiss the alarm. Clicking **Clear** only dismisses alarm messages; it does not actually resolve the cause of the alarms.

For information about working with alarms, see *Working with alarms, page 121*.

## Diagnostics

Use the tools provided to help diagnose communication or connection issues, trace network packets, or capture network packets.

- *Automatic diagnostic tests, page 273*
- *Manual diagnostic tests, page 274*

### Automatic diagnostic tests

By default, the page opens to the **Automatic** tab. Click **Run Diagnostics** to execute all of the tests listed in the table. Connectivity is tested from the Content Gateway host machine to each of the servers listed under **Test**. In addition, the availability of the DNS servers is confirmed.

- The IPv4 default gateway
- The IPv6 default gateway
- Your primary DNS server
- Your secondary DNS server
- download.websense.com (a Websense download server)
- ddsdom.websense.com (a Websense download server)
- ddsint.websense.com (a Websense download server)
- my.websense.com (customer account portal)

Once the diagnostics are run, additional information is provided:

- **Result** indicates whether the test is running, passed, failed, or could not complete.
- **Latency** provides the round-trip latency of the Ping command used to test the connection. The value, reported in milliseconds, is the amount of time between the command being sent and the response being received from the server.

An empty latency value does not necessarily indicate a problem. Rather, it indicates either (a) that the test passed, but the packet that holds the value was banned by something in the network, or (b) that the test failed, and thus no latency value could be obtained.
If the value seems high (a full 10 seconds, for example) when compared to other latency values, it may indicate a problem in the network.

- **Details** offers additional information for any test that failed or could not complete.

Below the table, the Last update information reflects the date and time the connections were last tested. Each time you access the page, the results of the last test will display.

**Manual diagnostic tests**

The **Manual** tab offers 4 commands typically run from the Linux command line.

- **Ping**, used to determine if a remote device can be reached across the network.
- **Traceroute**, used to determine the path network packets take and measure delays across the network.
- **NSlookup**, used to obtain domain name or IP address mapping.
- **TCPDump**, used to analyze network packets.

Click the radio button next to the command you want to execute and enter parameters for the command in the entry field provided.

- Enter a server name or IP address for **Ping** or **Traceroute**.
- Enter a server name for **NSlookup**.
- Enter valid parameters for **TCPDump**. Click the link provided for additional information on using TCPDump with Content Gateway. View the same technical article using this link.

Click the **Run** button next to your selected command to execute the test. The results for Ping, Traceroute, and NSlookup display in the **Test Results** section at the bottom of the pane.

Test results for TCPDump are typically too long to easily display and review in the Test Results window. When TCPDump is run, the Test Results window simply indicates the success or failure of the command.

As TCPDump runs, output is written to /opt/WCG/logs/tcpdump.pcap. This file is overwritten each time TCPDump is executed. When a test is successful, a link is provided so that you can download and view or save a copy of the most recent file.

To avoid disk space problems, tcpdump.pcap is limited to 10,000 packets. Once that limit is reached, no additional output is written to the file.

---

**Important**

TCPDump uses a lot of system resources. Try to avoid using it during peak hours when the system is busy.

---

As each command executes, the **Run** button becomes a **Stop** button. Click **Stop** to abort the command.
# Protocols

Protocol statistics are divided into the following categories:

- *HTTP*, page 275
- *FTP*, page 277

For *SSL* statistics, click the SSL button at the bottom of the Monitor tab.

## HTTP

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Client</strong></td>
<td></td>
</tr>
<tr>
<td>Total Document Bytes</td>
<td>Total amount of HTTP data served to clients since installation.</td>
</tr>
<tr>
<td>Total Header Bytes</td>
<td>Total amount of HTTP header data served to clients since installation.</td>
</tr>
<tr>
<td>Total Connections</td>
<td>Total number of HTTP client connections since installation.</td>
</tr>
<tr>
<td>Current Connections</td>
<td>Current number of HTTP client connections</td>
</tr>
<tr>
<td>Transactions in Progress</td>
<td>Total number of HTTP client transactions in progress.</td>
</tr>
<tr>
<td><strong>Server</strong></td>
<td></td>
</tr>
<tr>
<td>Total Document Bytes</td>
<td>Total amount of HTTP data received from origin servers since installation.</td>
</tr>
<tr>
<td>Total Header Bytes</td>
<td>Total amount of HTTP header data received from origin servers since installation.</td>
</tr>
<tr>
<td>Total Connections</td>
<td>Total number of HTTP server connections since installation.</td>
</tr>
<tr>
<td>Current Connections</td>
<td>Current number of HTTP server connections</td>
</tr>
<tr>
<td>Transactions in Progress</td>
<td>Total number of HTTP server connections currently in progress.</td>
</tr>
<tr>
<td><strong>Transaction</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Hits</strong></td>
<td></td>
</tr>
<tr>
<td>Fresh</td>
<td>Percentage of hits that are fresh and their average transaction times.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Stale Revalidated</td>
<td>Percentage of hits that are stale and revalidated and turn out to be still fresh and served, and their average transaction times.</td>
</tr>
<tr>
<td>Misses</td>
<td></td>
</tr>
<tr>
<td>Now Cached</td>
<td>Percentage of requests for documents that were not in the cache (but are now) and their average transaction times.</td>
</tr>
<tr>
<td>Server No Cache</td>
<td>Percentage of requests for HTTP objects that were not in the cache, but have server no-cache headers (cannot be cached); and their average transaction times.</td>
</tr>
<tr>
<td>Stale Reloaded</td>
<td>Percentage of misses that are revalidated and turn out to be changed, reloaded, and served, and their average transaction times.</td>
</tr>
<tr>
<td>Client No Cache</td>
<td>Percentage of misses with client no-cache headers and their average transaction times.</td>
</tr>
<tr>
<td>Errors</td>
<td></td>
</tr>
<tr>
<td>Connection Failures</td>
<td>Percentage of connect errors and their average transaction times.</td>
</tr>
<tr>
<td>Other Errors</td>
<td>Percentage of other errors and their average transaction times.</td>
</tr>
<tr>
<td>Aborted Transactions</td>
<td></td>
</tr>
<tr>
<td>Client Aborts</td>
<td>Percentage of client-aborted transactions and their average transaction times.</td>
</tr>
<tr>
<td>Questionable Client Aborts</td>
<td>Percentage of transactions that could possibly be client aborted and their average transaction times.</td>
</tr>
<tr>
<td>Partial Request Hangups</td>
<td>Percentage of early hangups (after partial requests) and their average transaction times.</td>
</tr>
<tr>
<td>Pre-Request Hangups</td>
<td>Percentage of pre-request hangups and their average transaction times.</td>
</tr>
<tr>
<td>Pre-Connect Hangups</td>
<td>Percentage of pre-connect hangups and their average transaction times.</td>
</tr>
<tr>
<td>Other Transactions</td>
<td></td>
</tr>
<tr>
<td>Unclassified</td>
<td>Percentage of unclassified transactions and their average transaction times.</td>
</tr>
<tr>
<td>FTP over HTTP</td>
<td></td>
</tr>
<tr>
<td>Connections</td>
<td></td>
</tr>
<tr>
<td>Open Server Connections</td>
<td>Number of open connections to the FTP server.</td>
</tr>
<tr>
<td>Successful PASV Connections</td>
<td>Number of successful PASV connections since installation.</td>
</tr>
<tr>
<td>Failed PASV Connections</td>
<td>Number of failed PASV connections since installation.</td>
</tr>
</tbody>
</table>
Statistics

Security statistics are divided into the following categories:

- Integrated Windows Authentication, page 278
- LDAP, page 280
- Legacy NTLM, page 280
- SOCKS, page 281

FTP

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful PORT Connections</td>
<td>Number of successful PORT connections since installation.</td>
</tr>
<tr>
<td>Failed PORT Connections</td>
<td>Number of failed PORT connections since installation.</td>
</tr>
<tr>
<td>Cache Statistics</td>
<td></td>
</tr>
<tr>
<td>Hits</td>
<td>Number of HTTP requests for FTP objects served from the cache.</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of HTTP requests for FTP objects forwarded directly to the origin server because the object is not in the cache or is stale.</td>
</tr>
<tr>
<td>Lookups</td>
<td>Number of times Content Gateway looked up an HTTP request for an FTP object in the cache.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td></td>
</tr>
<tr>
<td>Open Connections</td>
<td>Number of client connections currently open.</td>
</tr>
<tr>
<td>Bytes Read</td>
<td>Number of client request bytes read since installation.</td>
</tr>
<tr>
<td>Bytes Written</td>
<td>Number of client request bytes written since installation.</td>
</tr>
<tr>
<td>Server</td>
<td></td>
</tr>
<tr>
<td>Open Connections</td>
<td>Number of FTP server connections currently open.</td>
</tr>
<tr>
<td>Bytes Read</td>
<td>The number of bytes read from FTP servers since installation.</td>
</tr>
<tr>
<td>Bytes Written</td>
<td>Number of bytes written to the cache since installation.</td>
</tr>
</tbody>
</table>
**Note**

Even when multiple authentication rules are used, Content Gateway reports authentication statistics discreetly for each authentication method (IWA, LDAP, Legacy NTLM).

## Integrated Windows Authentication

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Diagnostic Test</strong></td>
<td>This function runs diagnostic tests on the Kerberos connection to the selected domain. Results are displayed on screen and written to /opt/WCG/logs/content_gateway.out and /opt/WCG/logs/smbadmin.log.</td>
</tr>
<tr>
<td><strong>Domain drop down box</strong></td>
<td>Select a joined domain. Unless Rule-Based Authentication is configured, there will only be 1 joined domain.</td>
</tr>
<tr>
<td><strong>Run Test button</strong></td>
<td>Click to initiate a test.</td>
</tr>
<tr>
<td><strong>Active Directory Joined Domains list</strong></td>
<td>Lists all joined AD domains. The <a href="https://example.com">Content Gateway Hostname DNS</a> is the name that clients must specify in their browser proxy settings for Kerberos authentication to occur.</td>
</tr>
</tbody>
</table>

**Kerberos request counters**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Kerberos requests</td>
<td>The total number of Kerberos authentication requests.</td>
</tr>
<tr>
<td>Authentication succeeded</td>
<td>The number of Kerberos authentication requests that resulted in successful authentication.</td>
</tr>
<tr>
<td>Authentication failed</td>
<td>The number of Kerberos authentication requests that resulted in authentication failure.</td>
</tr>
<tr>
<td>Kerberos errors</td>
<td>The number of Kerberos process errors.</td>
</tr>
</tbody>
</table>

**NTLM request counters**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total NTLM requests</td>
<td>The total number of NTLM authentication requests.</td>
</tr>
<tr>
<td>Authentication succeeded</td>
<td>The number of NTLM authentication requests that resulted in successful authentication.</td>
</tr>
<tr>
<td>Authentication failed</td>
<td>The number of NTLM authentication requests that resulted in authentication failure.</td>
</tr>
<tr>
<td>NTLM request errors</td>
<td>The number of NTLM process errors.</td>
</tr>
<tr>
<td>NTLM within negotiate requests</td>
<td>The number of NTLM requests encapsulated in Negotiate requests.</td>
</tr>
</tbody>
</table>
## Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Basic authentication request counters</strong></td>
<td></td>
</tr>
<tr>
<td>Total basic authentication requests</td>
<td>The total number of basic authentication requests.</td>
</tr>
<tr>
<td>Authentication succeeded</td>
<td>The number of basic authentication requests that resulted in successful authentication.</td>
</tr>
<tr>
<td>Authentication failed.</td>
<td>The number of basic authentication requests that resulted in authentication failure.</td>
</tr>
<tr>
<td>Basic authentication request errors</td>
<td>The number of basic authentication process errors.</td>
</tr>
<tr>
<td><strong>Performance counters</strong></td>
<td></td>
</tr>
<tr>
<td>Kerberos - Average time per transaction</td>
<td>The average time, in milliseconds, to complete a Kerberos transaction.</td>
</tr>
<tr>
<td>NTLM - Average time per transaction</td>
<td>The average time, in milliseconds, to complete a NTLM transaction.</td>
</tr>
<tr>
<td>Basic - Average time per transaction</td>
<td>The average time, in milliseconds, to complete a basic transaction.</td>
</tr>
<tr>
<td>Average helper latency per transaction</td>
<td>The average time for Samba to process an authentication request.</td>
</tr>
<tr>
<td>Time authentication spent offline</td>
<td>The time, in seconds, that Content Gateway was unable to perform NTLM authentication due to service or connectivity failures. (This measure does not apply to Kerberos because no communication with the DC is needed.)</td>
</tr>
<tr>
<td></td>
<td>If the Fail Open option is enabled (<a href="#">Global authentication options</a>), proxy requests may proceed without authentication.</td>
</tr>
<tr>
<td></td>
<td>The counter is incremented when connectivity is reestablished after a failure.</td>
</tr>
<tr>
<td>Number of times authentication servers or services went offline</td>
<td>The number of times that connectivity with authentication servers or services has been lost.</td>
</tr>
<tr>
<td><strong>Top lists counters</strong></td>
<td></td>
</tr>
<tr>
<td>Top lists counters provide a view into which User-Agent values and client IP addresses are most active. Four counters tally the top 20 User-Agent and client IP addresses that are passing or failing user authentication.</td>
<td></td>
</tr>
<tr>
<td>Button: Reset Top Lists to Zero</td>
<td>Resets all Top Lists counters to zero.</td>
</tr>
<tr>
<td>Top User-Agents passing authentication</td>
<td>Lists the top 20 User-Agent matches by number of authentication attempts that pass authentication.</td>
</tr>
<tr>
<td>Top User-Agents failing authentication</td>
<td>Lists the top 20 User-Agent matches by number of authentication attempts that fail authentication.</td>
</tr>
</tbody>
</table>
## LDAP

**Statistic**

<table>
<thead>
<tr>
<th>Top Client IP addresses passing authentication</th>
<th>Lists the top 20 client IP addresses by number of authentication attempts that pass authentication.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Client IP addresses failing authentication</td>
<td>Lists the top 20 client IP addresses by number of authentication attempts that fail authentication.</td>
</tr>
</tbody>
</table>

### Top Client IP addresses passing authentication

Lists the top 20 client IP addresses by number of authentication attempts that pass authentication.

### Top Client IP addresses failing authentication

Lists the top 20 client IP addresses by number of authentication attempts that fail authentication.

### Cache

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hits</td>
<td>Number of hits in the LDAP cache.</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of misses in the LDAP cache.</td>
</tr>
</tbody>
</table>

### Errors

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>Number of LDAP server errors.</td>
</tr>
</tbody>
</table>

### Successful Authentications

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Succeeded</td>
<td>Number of times authentication was successful.</td>
</tr>
</tbody>
</table>

### Unsuccessful Authentications

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Denied</td>
<td>Number of times the LDAP Server denied authentication.</td>
</tr>
<tr>
<td>Authentication Timeouts</td>
<td>Number of times authentication timed out.</td>
</tr>
<tr>
<td>Authentication Cancelled</td>
<td>Number of times authentication was terminated after LDAP authentication was started and before it was completed.</td>
</tr>
</tbody>
</table>

**Note:** This does not count the number of times that an authentication request was cancelled by the client by clicking “Cancel” in the dialog box that prompts for credentials.

## Legacy NTLM

**Statistic**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td></td>
</tr>
<tr>
<td>Hits</td>
<td>Number of hits in the NTLM cache.</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of misses in the NTLM cache.</td>
</tr>
</tbody>
</table>

### Cache

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hits</td>
<td>Number of hits in the NTLM cache.</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of misses in the NTLM cache.</td>
</tr>
</tbody>
</table>

### Errors

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>Number of NTLM server errors.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Successful Authentications</strong></td>
<td></td>
</tr>
<tr>
<td>Authentication Succeeded</td>
<td>Number of times authentication was successful.</td>
</tr>
<tr>
<td><strong>Unsuccessful Authentications</strong></td>
<td></td>
</tr>
<tr>
<td>Authentication Denied</td>
<td>Number of times the NTLM server denied authentication.</td>
</tr>
<tr>
<td>Authentication Cancelled</td>
<td>Number of times authentication was cancelled.</td>
</tr>
<tr>
<td>Authentication Rejected</td>
<td>Number of times authentication failed because the queue was full.</td>
</tr>
<tr>
<td><strong>Queue Size</strong></td>
<td></td>
</tr>
<tr>
<td>Authentication Queued</td>
<td>Number of requests that are currently queued because all of the domain controllers are busy.</td>
</tr>
</tbody>
</table>

## SOCKS

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Appliance SOCKS Server</td>
<td>Indicates whether the on-appliance SOCKS server is on (enabled) or off (disabled).</td>
</tr>
<tr>
<td><strong>Unsuccessful Connections</strong></td>
<td>Number of unsuccessful connections to the SOCKS server since Content Gateway was started.</td>
</tr>
<tr>
<td><strong>Successful Connections</strong></td>
<td>Number of successful connections to the SOCKS server since Content Gateway was started.</td>
</tr>
<tr>
<td>Connections in Progress</td>
<td>Number of connections to the SOCKS server currently in progress.</td>
</tr>
</tbody>
</table>

## Web DLP

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Posts</td>
<td>Total number of posts sent to Web DLP.</td>
</tr>
<tr>
<td>Total Analyzed</td>
<td>Total number of posts analyzed by Web DLP.</td>
</tr>
<tr>
<td>FTP Analyzed</td>
<td>Total number of FTP requests analyzed by DLP.</td>
</tr>
<tr>
<td>Blocked Requests</td>
<td>Total number of requests blocked after analysis and policy enforcement.</td>
</tr>
</tbody>
</table>
Statistics

Subsystems statistics are divided into the following categories:

- Cache, page 282
- Clustering, page 284
- Logging, page 284

### Cache

**Note**

Cache statistics may be non-zero even if all content sent to Content Gateway is not cacheable. Content Gateway performs a cache-read even if the client sends a no-cache control header.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed Requests</td>
<td>Total number of requests allowed after analysis and policy enforcement.</td>
</tr>
<tr>
<td>Failed Requests</td>
<td>Total number of posts sent to Web DLP that timed out or otherwise failed to complete.</td>
</tr>
<tr>
<td>Huge Requests</td>
<td>Total number of requests that exceeded the maximum transaction size.</td>
</tr>
<tr>
<td>Tiny Requests</td>
<td>Total number of requests that were smaller than the minimum transaction size.</td>
</tr>
<tr>
<td>Decrypted Requests</td>
<td>Total number of SSL requests decrypted and sent to Web DLP.</td>
</tr>
<tr>
<td>Total Bytes Scanned</td>
<td>Total number of bytes scanned by Web DLP.</td>
</tr>
<tr>
<td>Average Response Time</td>
<td>Average time needed to by Web DLP to complete a scan since the last time Content Gateway was started.</td>
</tr>
<tr>
<td>Statistic</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td><strong>Ram Cache</strong></td>
<td></td>
</tr>
<tr>
<td>Bytes</td>
<td>Total size of the RAM cache, in bytes.</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of document hits from the RAM cache.</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of document misses from the RAM cache. The documents may be hits from the cache disk.</td>
</tr>
<tr>
<td><strong>Reads</strong></td>
<td></td>
</tr>
<tr>
<td>In Progress</td>
<td>Number of cache reads in progress (HTTP and FTP).</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of cache reads completed since Content Gateway was started (HTTP and FTP).</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of cache read misses since Content Gateway was started (HTTP and FTP).</td>
</tr>
<tr>
<td><strong>Writes</strong></td>
<td></td>
</tr>
<tr>
<td>In Progress</td>
<td>Number of cache writes in progress (HTTP and FTP).</td>
</tr>
<tr>
<td>Successes</td>
<td>Number of successful cache writes since Content Gateway was started (HTTP and FTP).</td>
</tr>
<tr>
<td>Failures</td>
<td>Number of failed cache writes since Content Gateway was started (HTTP and FTP).</td>
</tr>
<tr>
<td><strong>Updates</strong></td>
<td></td>
</tr>
<tr>
<td>In Progress</td>
<td>Number of HTTP document updates in progress. An update occurs when the Content Gateway revalidates an object, finds it to be fresh, and updates the object header.</td>
</tr>
<tr>
<td>Successes</td>
<td>Number of successful cache HTTP updates completed since Content Gateway was started.</td>
</tr>
<tr>
<td>Failures</td>
<td>Number of cache HTTP update failures since Content Gateway was started.</td>
</tr>
<tr>
<td><strong>Removes</strong></td>
<td></td>
</tr>
<tr>
<td>In Progress</td>
<td>Number of document removes in progress. A remove occurs when the Content Gateway revalidates a document, finds it to be deleted on the origin server, and deletes it from the cache (includes HTTP and FTP removes).</td>
</tr>
<tr>
<td>Successes</td>
<td>Number of successful cache removes completed since Content Gateway was started (includes HTTP and FTP removes).</td>
</tr>
<tr>
<td>Failures</td>
<td>Number of cache remove failures since Content Gateway was started (includes HTTP and FTP removes).</td>
</tr>
</tbody>
</table>
Clustering

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clustering Nodes</td>
<td>Number of clustering nodes.</td>
</tr>
</tbody>
</table>

Logging

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Currently Open Log Files</td>
<td>Number of event log files (formats) that are currently being written.</td>
</tr>
<tr>
<td>Space Used for Log Files</td>
<td>Current amount of space being used by the logging directory, which contains all of the event and error logs.</td>
</tr>
<tr>
<td>Number of Access Events Logged</td>
<td>Number of access events that have been written to log files since Content Gateway installation. This counter represents one entry in one file. If multiple formats are being written, a single access creates multiple event log entries.</td>
</tr>
<tr>
<td>Number of Access Events Skipped</td>
<td>Number of access events skipped (because they were filtered out) since Content Gateway installation.</td>
</tr>
<tr>
<td>Number of Error Events Logged</td>
<td>Number of access events that have been written to the event error log since Content Gateway installation.</td>
</tr>
</tbody>
</table>

Networking

Networking statistics are divided into the following categories:

- **System**, page 285
- **ARM**, page 285
- **ICAP**, page 286
- **WCCP**, page 287
- **DNS Resolver**, page 288
- **Virtual IP**, page 289
## System

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>General</strong></td>
<td></td>
</tr>
<tr>
<td>Hostname</td>
<td>The hostname assigned to this Content Gateway machine.</td>
</tr>
<tr>
<td>Search Domain</td>
<td>Search domain that this Content Gateway machine uses.</td>
</tr>
<tr>
<td>IPv4 or IPv6</td>
<td></td>
</tr>
<tr>
<td>Default Gateway</td>
<td>IP address of the default gateway used to forward packets from this Content Gateway machine to other networks or subnets.</td>
</tr>
<tr>
<td>Primary DNS</td>
<td>IP address of the primary DNS server that this Content Gateway machine uses to resolve host names.</td>
</tr>
<tr>
<td>Secondary DNS</td>
<td>Secondary DNS server that this Content Gateway machine uses to resolve host names.</td>
</tr>
<tr>
<td>Tertiary DNS</td>
<td>Third DNS server that this Content Gateway machine uses to resolve host names.</td>
</tr>
<tr>
<td><strong>NIC &lt;interface_name&gt;</strong></td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Indicates whether the NIC is up or down.</td>
</tr>
<tr>
<td>Start on Boot</td>
<td>Indicates whether the NIC is configured to start on boot.</td>
</tr>
<tr>
<td>IPv4 or IPv6</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>The assigned IP address of the NIC.</td>
</tr>
<tr>
<td>Netmask</td>
<td>The netmask that goes with the IP address.</td>
</tr>
<tr>
<td>Gateway</td>
<td>The configured default gateway IP address for the NIC.</td>
</tr>
</tbody>
</table>

## ARM

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Network Address Translation (NAT) Statistics</strong></td>
<td></td>
</tr>
<tr>
<td>Client Connections Natted</td>
<td>Number of client connections redirected transparently by the ARM.</td>
</tr>
<tr>
<td>Client Connections in Progress</td>
<td>Number of client connections currently in progress with the ARM.</td>
</tr>
<tr>
<td>Total Packets Natted</td>
<td>Number of packets translated by the ARM.</td>
</tr>
<tr>
<td>DNS Packets Natted</td>
<td>Number of DNS packets translated by the ARM.</td>
</tr>
</tbody>
</table>
### Bypass Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Connections Bypassed</td>
<td>Total number of connections bypassed by the ARM.</td>
</tr>
<tr>
<td>Connections Dynamically Bypassed</td>
<td>Total number of connections dynamically bypassed. See <em>Dynamic bypass rules</em>, page 71.</td>
</tr>
<tr>
<td>DNS Packets Bypassed</td>
<td>Number of DNS packets bypassed by the ARM.</td>
</tr>
<tr>
<td>Connections Shed</td>
<td>Total number of connections shed. See <em>Connection load shedding</em>, page 73.</td>
</tr>
</tbody>
</table>

### HTTP Bypass Statistics

<table>
<thead>
<tr>
<th>Bypass on Bad Client Request</th>
<th>Number of requests forwarded directly to the origin server because Content Gateway encountered non-HTTP traffic on port 80.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bypass on 400</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 400 error.</td>
</tr>
<tr>
<td>Bypass on 401</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 401 error.</td>
</tr>
<tr>
<td>Bypass on 403</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 403 error.</td>
</tr>
<tr>
<td>Bypass on 405</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 405 error.</td>
</tr>
<tr>
<td>Bypass on 406</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 406 error.</td>
</tr>
<tr>
<td>Bypass on 408</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 408 error.</td>
</tr>
<tr>
<td>Bypass on 500</td>
<td>Number of requests forwarded directly to the origin server because an origin server returned a 500 error.</td>
</tr>
</tbody>
</table>

### Total Posts

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Posts</td>
<td>Total number of posts sent to TRITON AP-DATA or Data Security Suite.</td>
</tr>
<tr>
<td>Total Analyzed</td>
<td>Total number of posts analyzed by TRITON AP-DATA or Data Security Suite.</td>
</tr>
<tr>
<td>FTP Analyzed</td>
<td>Total number of FTP requests analyzed by TRITON AP-DATA or Data Security Suite.</td>
</tr>
<tr>
<td>Blocked Requests</td>
<td>Total number of requests blocked after analysis and policy enforcement.</td>
</tr>
</tbody>
</table>
Statistics

### WCCP Statistics

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allowed Requests</td>
<td>Total number of requests allowed after analysis and policy enforcement.</td>
</tr>
<tr>
<td>Failed Requests</td>
<td>Total number of posts sent to TRITON AP-DATA or Data Security Suite that timed out or otherwise failed to complete.</td>
</tr>
<tr>
<td>Huge Requests</td>
<td>Total number of requests that exceeded the maximum transaction size.</td>
</tr>
<tr>
<td>Decrypted Requests</td>
<td>Total number of SSL requests decrypted and sent to TRITON AP-DATA or Data Security Suite.</td>
</tr>
</tbody>
</table>

#### WCCP v2.0 Statistics

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>WCCP Fragmentation</strong></td>
<td></td>
</tr>
<tr>
<td>Total Fragments</td>
<td>Total number of WCCP fragments.</td>
</tr>
<tr>
<td>Fragmentation Table Entries</td>
<td>Number of entries in the fragmentation table.</td>
</tr>
<tr>
<td>Out of Order Fragments</td>
<td>Number of fragments out of order.</td>
</tr>
<tr>
<td>Matches</td>
<td>Number of fragments that match a fragment in the fragmentation table.</td>
</tr>
<tr>
<td><strong>Service group name</strong></td>
<td></td>
</tr>
<tr>
<td>Service Group ID</td>
<td>Service Group ID for the protocol being serviced.</td>
</tr>
<tr>
<td>Configured mode</td>
<td>The forward, return and assignment settings.</td>
</tr>
<tr>
<td>IP Address</td>
<td>IP address to which the router is sending traffic.</td>
</tr>
<tr>
<td>Leader’s IP Address</td>
<td>IP address of the leader in the WCCP cache farm.</td>
</tr>
<tr>
<td>Number of Buckets Assigned</td>
<td>Number of buckets assigned to this Content Gateway node. Determined by the value of Weight and the current active nodes.</td>
</tr>
<tr>
<td>Number of Caches</td>
<td>The number of caches in the WCCP cache farm.</td>
</tr>
<tr>
<td>Number of Routers</td>
<td>The number of routers sending traffic to this Content Gateway node.</td>
</tr>
</tbody>
</table>

WCCP v2 statistics are displayed only if WCCP version v2 is enabled.
### DNS Proxy

**Help | Content Gateway | Version 8.1.x**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Requests</td>
<td>Total number of DNS requests received from clients.</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of DNS cache hits.</td>
</tr>
<tr>
<td>Misses</td>
<td>Number of DNS cache misses.</td>
</tr>
</tbody>
</table>

### DNS Resolver

**Help | Content Gateway | Version 8.1.x**

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Lookups</td>
<td>Total number of DNS lookups (queries to name servers) since installation.</td>
</tr>
<tr>
<td>Successes</td>
<td>Total number of successful DNS lookups since installation.</td>
</tr>
<tr>
<td>Average Lookup Time (ms)</td>
<td>Average DNS lookup time.</td>
</tr>
<tr>
<td>Host Database</td>
<td></td>
</tr>
</tbody>
</table>
The Virtual IP table displays the virtual IP addresses that are managed by the proxies in the cluster.

### Client Connection Status

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clients Connections</td>
<td></td>
</tr>
<tr>
<td>Current Unique Clients Connected</td>
<td></td>
</tr>
<tr>
<td>Total Unique Clients that have Connected</td>
<td>Total since Content Gateway last started.</td>
</tr>
<tr>
<td>Total Clients that have Exceeded the Limits</td>
<td>Total clients that exceeded the connection limits since Content Gateway last started. See Configure &gt; Connection Management &gt; Client Connection Control.</td>
</tr>
<tr>
<td>Total Clients for which Connections were Closed</td>
<td>Total since Content Gateway last started.</td>
</tr>
</tbody>
</table>

### Performance

Performance graphs allow you to monitor Websense Content Gateway performance and analyze network traffic. Performance graphs also provide information about virtual memory usage, client connections, document hit rates, hit and miss rates, and so on. Performance graphs are created by the Multi Router Traffic Grapher tool (MRTG). MRTG uses 5-minute intervals to accumulate statistics.
Performance graphs provide the following information.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Displays a subset of the graphs available.</td>
</tr>
<tr>
<td>Daily</td>
<td>Displays graphs that provide historical information for the current day.</td>
</tr>
<tr>
<td>Weekly</td>
<td>Displays graphs that provide historical information for the current week.</td>
</tr>
<tr>
<td>Monthly</td>
<td>Displays graphs that provide historical information for the current month.</td>
</tr>
<tr>
<td>Yearly</td>
<td>Displays graphs that provide historical information for the current year.</td>
</tr>
</tbody>
</table>

**Important**

To run the Multi Router Traffic Grapher tool in Linux, you must have Perl version 5.005 or later installed on your Content Gateway system.

A description is given adjacent to each graph. Click on a graph to get the daily, weekly, monthly, and yearly on a single screen.

These graphs are available (sorted alphabetically):

- Active Client Connections
- Active Native FTP Client Connections
- Active Origin Server Connections
- Active Parent Proxy Connections
- Bandwidth Savings
- Cache Read
- Cache Reads Per Second
- Cache Writes
- Cache Writes Per Second
- Completed Client Transactions Per Second
- Content Gateway Manager Memory Usage
- Content Gateway Uptime
- CPU Available
- CPU Busy
- Web DLP Module Memory Usage
- Disk Cache Usage
- DNS Cache Usage
- DNS Lookup Latency
- HTTP Abort Latency
- HTTP and HTTPS Transactions Per Second
- HTTP Cache Hit Latency
- HTTP Cache Miss Latency
- HTTP Connection Errors & Aborts (Count)
- HTTP Connection Errors & Aborts (Percentage)
- HTTP Document Hit Rate
- HTTP Error Latency
- HTTP Hits & Misses (Count)
- HTTP Hits & Misses (Percentage)
- HTTP POST and FTP PUT Transactions Per Second
- Microsoft Internet Explorer Browser Requests (Percentage)
- MRTG Runtime
- Network Reads
- Network Writes
- RAM Cache Read I/O Hit Rate
- RAM Cache Usage
- System Memory
- TCP CLOSE_WAIT Connections
- TCP Connect Rate
- TCP ESTABLISHED Connections
- TCP FIN_WAIT_1 Connections
- TCP FIN_WAIT_2 Connections
- TCP LAST_ACK Connections
- TCP Segments Transmitted
- TCP Throughput
- TCP TIME_WAIT Connections
- Throughput in Bytes
- Throughput in Error and Dropped Packets
- Throughput in Packets
- Transaction Buffer Memory Usage
- WCCP Exceptional Input Fragments
- WCCP Fragment Table Size
- WCCP Input Fragments
- Scanned Transactions (Percentage)
- Slow Scanned Transactions
- Slow Transactions
SSL

The following tabs monitor and report on SSL traffic.

SSL Key Data, page 292
CRL Statistics, page 293
Reports, page 293

SSL Key Data

These fields provide information about SSL connections and activity.

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSL Inbound Key Data</td>
<td></td>
</tr>
<tr>
<td>Is alive</td>
<td>Online indicates that SSL support is enabled.</td>
</tr>
<tr>
<td>Current SSL connections</td>
<td>The number of active inbound SSL requests (browser to Content Gateway).</td>
</tr>
<tr>
<td>Total SSL server connections</td>
<td>The number of browser requests.</td>
</tr>
<tr>
<td>Total finished SSL server connections</td>
<td>The number of browser requests that resulted in decryption.</td>
</tr>
<tr>
<td>Total SSL server renegotiation requests</td>
<td>The number of browser requests renegotiated due to handshake failures or invalid certificates between the browser and Content Gateway.</td>
</tr>
<tr>
<td>SSL Outbound Key Data</td>
<td></td>
</tr>
<tr>
<td>Is alive</td>
<td>Online indicates that SSL support is enabled.</td>
</tr>
<tr>
<td>Current SSL connections</td>
<td>The number of active outbound SSL requests (Content Gateway to origin server).</td>
</tr>
<tr>
<td>Total SSL client connections</td>
<td>The number of Content Gateway requests to origin servers.</td>
</tr>
<tr>
<td>Total finished SSL client connections</td>
<td>The number of requests where data went from Content Gateway to the origin server.</td>
</tr>
<tr>
<td>Total SSL client renegotiation requests</td>
<td>The number of requests that were renegotiated due to handshake failures or invalid certificates between Content Gateway and the origin server</td>
</tr>
</tbody>
</table>
These fields provide information about certificate status.

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SSL session cache hits</td>
<td>The number of times that a request was validated by a key in the session cache.</td>
</tr>
<tr>
<td>Total SSL session cache misses</td>
<td>The number of times that a request could not be validated by a key in the session cache.</td>
</tr>
<tr>
<td>Total SSL session cache timeouts</td>
<td>The number of times that keys were removed from the session cache because the timeout period expired.</td>
</tr>
</tbody>
</table>

### CRL Statistics

These fields provide information about certificate status.

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRL list count</td>
<td>The number of certificates on the Certificate Revocation List. This list is downloaded every night. See <em>Keeping revocation information up to date</em>, page 165.</td>
</tr>
</tbody>
</table>

### OCSP Statistics

<table>
<thead>
<tr>
<th>Statistic/Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OCSP good count</td>
<td>The number of responses that certificates are valid.</td>
</tr>
<tr>
<td>OCSP unknown count</td>
<td>The number of OCSP responses where the certificate cannot be verified.</td>
</tr>
<tr>
<td>OCSP revoked count</td>
<td>The number of certificates found to have been revoked.</td>
</tr>
</tbody>
</table>

### Reports

See *Creating SSL-related reports*, page 124 for information on creating reports on certificate authorities or incidents.
Commands and Variables

Use the command line to execute individual commands and when scripting multiple commands in a shell.

Run commands as ‘root’.

Execute Content Gateway commands from the Content Gateway bin directory.

Note
If the Content Gateway bin directory is not in your path, prepend the command with:

./

For example:

./content_line -p

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCGAdmin start</td>
<td>Starts the Content Gateway service</td>
</tr>
<tr>
<td>WCGAdmin stop</td>
<td>Stops the Content Gateway service</td>
</tr>
<tr>
<td>WCGAdmin restart</td>
<td>Stops the Content Gateway service and then starts it again</td>
</tr>
<tr>
<td>WCGAdmin status</td>
<td>Displays the status (running or not running) of the Content Gateway services: Content Cop, Content Gateway, Content Gateway Manager, and Analytics Server.</td>
</tr>
<tr>
<td>WCGAdmin help</td>
<td>Displays a list of the WCGAdmin commands</td>
</tr>
<tr>
<td>content_line -h</td>
<td>Displays the list of Content Gateway commands</td>
</tr>
</tbody>
</table>
### Commands and Variables

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>content_line -p</td>
<td>Specifies the location (directory and path) of the file used for Content Gateway command line and Content Gateway manager communication. The default path is <code>install_dir/config/cli</code></td>
</tr>
<tr>
<td>socket_path</td>
<td></td>
</tr>
<tr>
<td>content_line -r variable</td>
<td>Displays specific performance statistics or a current configuration setting. For a list of the variables you can specify, see <em>Websense Content Gateway variables</em>, page 297.</td>
</tr>
<tr>
<td>content_line -s variable -v value</td>
<td>Sets configuration variables. <code>variable</code> is the configuration variable you want to change and <code>value</code> is the value you want to set. See <code>records.config</code>, page 422, for a list of the configuration variables you can specify.</td>
</tr>
<tr>
<td>content_line -x</td>
<td>Initiates a Content Gateway configuration file reread. Executing this command is similar to clicking Apply in the Content Gateway manager.</td>
</tr>
<tr>
<td>content_line -y</td>
<td>Clears Websense dynamically signed certificates from the cache and the SSL sqlite database.</td>
</tr>
<tr>
<td>content_line db_clear -y</td>
<td>Clears Websense dynamically signed certificates from the SSL sqlite database.</td>
</tr>
<tr>
<td>content_line -M</td>
<td>Restarts the <code>content_manager</code> process and the <code>content_gateway</code> process on all the nodes in a cluster.</td>
</tr>
<tr>
<td>content_line -L</td>
<td>Restarts the <code>content_manager</code> process and the <code>content_gateway</code> process on the local node.</td>
</tr>
<tr>
<td>content_line -S</td>
<td>Shuts down Content Gateway on the local node.</td>
</tr>
<tr>
<td>content_line -U</td>
<td>Starts Content Gateway on the local node.</td>
</tr>
<tr>
<td>content_line -B</td>
<td>Bounces Content Gateway cluster-wide. Bouncing Content Gateway shuts down and immediately restarts the proxy node-by-node.</td>
</tr>
<tr>
<td>content_line -b</td>
<td>Bounces Content Gateway on the local node. Bouncing Content Gateway shuts down and immediately restarts the proxy on the local node.</td>
</tr>
<tr>
<td>content_line -W</td>
<td>Enables WCCP router communication.</td>
</tr>
<tr>
<td>content_line -w</td>
<td>Disables WCCP router communication. After changing the Content Gateway WCCP configuration, or the router WCCP configuration, force WCCP communication down for 60 seconds to force WCCP to negotiate a new connection.</td>
</tr>
<tr>
<td>content_line -N snapshot_name</td>
<td>Perform a Content Gateway snapshot (backup). See <em>Taking configuration snapshots</em>, page 115.</td>
</tr>
<tr>
<td>content_line -n snapshot_name</td>
<td>Restore a Content Gateway snapshot. See <em>Restoring configuration snapshots</em>, page 115.</td>
</tr>
</tbody>
</table>
Websense Content Gateway variables

You can change the value of a specific configuration variable on the command line with the `content_line -s` command. The variables that can be set are described in `records.config`, page 422.

You can view statistics related to specific variables on the command line with the `content_line -r` command. See below for a list of variables.

See, also, *Viewing statistics from the command line, page 121*, and *Command-line interface, page 112*.

Statistics

The following table lists the variables you can specify on the command line to view individual statistics. See *Statistics, page 269* for additional information.

To view a statistic, at the prompt enter:

```
content_line -r variable
```

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Summary</strong></td>
<td></td>
</tr>
<tr>
<td>Node name</td>
<td><code>proxy.node.hostname</code></td>
</tr>
<tr>
<td>Objects served</td>
<td><code>proxy.node.user_agents_total_documents_served</code></td>
</tr>
<tr>
<td>Transactions per second</td>
<td><code>proxy.node.user_agent_xacts_per_second</code></td>
</tr>
<tr>
<td><strong>Node</strong></td>
<td></td>
</tr>
<tr>
<td>Document hit rate</td>
<td><code>proxy.node.cache_hit_ratio_avg_10s</code></td>
</tr>
<tr>
<td>Bandwidth savings</td>
<td><code>proxy.node.bandwidth_hit_ratio_avg_10s</code></td>
</tr>
<tr>
<td>Cache percent free</td>
<td><code>proxy.node.cache.percent_free</code></td>
</tr>
<tr>
<td>Open origin server connections</td>
<td><code>proxy.node.current_server_connections</code></td>
</tr>
<tr>
<td>Open client connections</td>
<td><code>proxy.node.current_client_connections</code></td>
</tr>
<tr>
<td>Cache transfers in progress</td>
<td><code>proxy.node.current_cache_connections</code></td>
</tr>
<tr>
<td>Statistic</td>
<td>Variable</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------------------------------------</td>
</tr>
<tr>
<td>Client throughput (Mbits/sec)</td>
<td>proxy.node.client_throughput_out</td>
</tr>
<tr>
<td></td>
<td>proxy.cluster.client_throughput_out</td>
</tr>
<tr>
<td>Transactions per second</td>
<td>proxy.node.http.user_agent_xacts_per_second</td>
</tr>
<tr>
<td></td>
<td>proxy.cluster.http.user_agent_xacts_per_second</td>
</tr>
<tr>
<td>DNS lookups per second</td>
<td>proxy.node.dns.lookups_per_second</td>
</tr>
<tr>
<td></td>
<td>proxy.cluster.dns.lookups_per_second</td>
</tr>
<tr>
<td>Host database hit rate</td>
<td>proxy.node.hostdb.hit_ratio_avg_10s</td>
</tr>
<tr>
<td></td>
<td>proxy.cluster.hostdb.hit_ratio_avg_10s</td>
</tr>
<tr>
<td><strong>HTTP</strong></td>
<td><strong>HTTP</strong></td>
</tr>
<tr>
<td>Total document bytes from client</td>
<td>proxy.process.http.user_agent_response_document_total_size</td>
</tr>
<tr>
<td>Total header bytes from client</td>
<td>proxy.process.http.user_agent_response_header_total_size</td>
</tr>
<tr>
<td>Total response header bytes to</td>
<td>proxy.process.http.user_agent_response_from_cache_header_total_size</td>
</tr>
<tr>
<td>client from cache</td>
<td></td>
</tr>
<tr>
<td>Total response document bytes to</td>
<td>proxy.process.http.user_agent_response_from_cache_document_total_size</td>
</tr>
<tr>
<td>client from cache</td>
<td></td>
</tr>
<tr>
<td>Total connections to client</td>
<td>proxy.process.http.current_client_connections</td>
</tr>
<tr>
<td>Current unique clients connected</td>
<td>proxy.process.http.client.unique_clients.active</td>
</tr>
<tr>
<td>Total unique clients that have</td>
<td>proxy.process.http.client.unique_clients.total</td>
</tr>
<tr>
<td>connected</td>
<td></td>
</tr>
<tr>
<td>Total clients that exceeded limit</td>
<td>proxy.process.http.client.exceeding_limit</td>
</tr>
<tr>
<td>Total clients for which</td>
<td>proxy.process.http.client.closed_connections</td>
</tr>
<tr>
<td>connections were closed</td>
<td></td>
</tr>
<tr>
<td>Open HTTP client connections</td>
<td>proxy.process.http.current_active_http_client_connections</td>
</tr>
<tr>
<td>Open HTTPS client connections</td>
<td>proxy.node.process.http.current_active_https_client_connections</td>
</tr>
<tr>
<td>Client Requests (IPv4 +IPv6)</td>
<td>proxy.process.http.real_client_requests</td>
</tr>
<tr>
<td>Client IPv6 Requests</td>
<td>proxy.process.http.real_client_ipv6_requests</td>
</tr>
<tr>
<td>Client transactions in progress</td>
<td>proxy.process.http.current_client_transactions</td>
</tr>
<tr>
<td>Total document bytes from origin</td>
<td>proxy.process.http.origin_server_response_document_total_size</td>
</tr>
<tr>
<td>server</td>
<td></td>
</tr>
<tr>
<td>Statistic</td>
<td>Variable</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>--------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Total header bytes from origin server</td>
<td><code>proxy.process.http.origin_server_response_header_total_size</code></td>
</tr>
<tr>
<td>Total connections to origin server</td>
<td><code>proxy.process.http.current_server_connections</code></td>
</tr>
<tr>
<td>Origin server transactions in progress</td>
<td><code>proxy.process.http.current_server_transactions</code></td>
</tr>
<tr>
<td>FTP</td>
<td></td>
</tr>
<tr>
<td>Currently open FTP connections</td>
<td><code>proxy.process.ftp.connections_currently_open</code></td>
</tr>
<tr>
<td>Successful PASV connections</td>
<td><code>proxy.process.ftp.connections_successful_pasv</code></td>
</tr>
<tr>
<td>Unsuccessful PASV connections</td>
<td><code>proxy.process.ftp.connections_failed_pasv</code></td>
</tr>
<tr>
<td>Successful PORT connections</td>
<td><code>proxy.process.ftp.connections_successful_port</code></td>
</tr>
<tr>
<td>Unsuccessful PORT connections</td>
<td><code>proxy.process.ftp.connections_failed_port</code></td>
</tr>
<tr>
<td>WCCP</td>
<td></td>
</tr>
<tr>
<td>Enabled</td>
<td><code>proxy.config.wccp.enabled</code></td>
</tr>
<tr>
<td>WCCP interface</td>
<td><code>proxy.local.wccp2.ethernet_interface</code></td>
</tr>
<tr>
<td>Cache</td>
<td></td>
</tr>
<tr>
<td>Bytes used</td>
<td><code>proxy.process.cache.bytes_used</code></td>
</tr>
<tr>
<td>Cache size</td>
<td><code>proxy.process.cache.bytes_total</code></td>
</tr>
<tr>
<td>Lookups in progress</td>
<td><code>proxy.process.cache.lookup.active</code></td>
</tr>
<tr>
<td>Lookups completed</td>
<td><code>proxy.process.cache.lookup.success</code></td>
</tr>
<tr>
<td>Lookup misses</td>
<td><code>proxy.process.cache.lookup.failure</code></td>
</tr>
<tr>
<td>Reads in progress</td>
<td><code>proxy.process.cache.read.active</code></td>
</tr>
<tr>
<td>Reads completed</td>
<td><code>proxy.process.cache.read.success</code></td>
</tr>
<tr>
<td>Read misses</td>
<td><code>proxy.process.cache.read.failure</code></td>
</tr>
<tr>
<td>Writes in progress</td>
<td><code>proxy.process.cache.write.active</code></td>
</tr>
<tr>
<td>Writes completed</td>
<td><code>proxy.process.cache.write.success</code></td>
</tr>
<tr>
<td>Write failures</td>
<td><code>proxy.process.cache.write.failure</code></td>
</tr>
<tr>
<td>Updates in progress</td>
<td><code>proxy.process.cache.update.active</code></td>
</tr>
<tr>
<td>Updates completed</td>
<td><code>proxy.process.cache.update.success</code></td>
</tr>
<tr>
<td>Update failures</td>
<td><code>proxy.process.cache.update.failure</code></td>
</tr>
<tr>
<td>Removes in progress</td>
<td><code>proxy.process.cache.remove.active</code></td>
</tr>
<tr>
<td>Statistic</td>
<td>Variable</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>Remove successes</td>
<td>proxy.process.cache.remove.success</td>
</tr>
<tr>
<td>Remove failures</td>
<td>proxy.process.cache.remove.failure</td>
</tr>
<tr>
<td>Host DB</td>
<td></td>
</tr>
<tr>
<td>Total lookups</td>
<td>proxy.process.hostdb.total_lookups</td>
</tr>
<tr>
<td>Total hits</td>
<td>proxy.process.hostdb.total_hits</td>
</tr>
<tr>
<td>Time TTL (min)</td>
<td>proxy.process.hostdb.ttl</td>
</tr>
<tr>
<td>DNS</td>
<td></td>
</tr>
<tr>
<td>DNS total lookups</td>
<td>proxy.process.dns.total_dns_lookups</td>
</tr>
<tr>
<td>Average lookup time (ms)</td>
<td>proxy.process.dns.lookup_avg_time</td>
</tr>
<tr>
<td>DNS successes</td>
<td>proxy.process.dns.lookup_successes</td>
</tr>
<tr>
<td>Cluster</td>
<td></td>
</tr>
<tr>
<td>Bytes read</td>
<td>proxy.process.cluster.read_bytes</td>
</tr>
<tr>
<td>Bytes written</td>
<td>proxy.process.cluster.write_bytes</td>
</tr>
<tr>
<td>Connections open</td>
<td>proxy.process.cluster.connections_open</td>
</tr>
<tr>
<td>Total operations</td>
<td>proxy.process.cluster.connections_opened</td>
</tr>
<tr>
<td>Network backups</td>
<td>proxy.process.cluster.net_backup</td>
</tr>
<tr>
<td>Clustering nodes</td>
<td>proxy.process.cluster.nodes</td>
</tr>
<tr>
<td>SOCKS</td>
<td></td>
</tr>
<tr>
<td>Unsuccessful connections</td>
<td>proxy.process.socks.connections_unsuccessful</td>
</tr>
<tr>
<td>Successful connections</td>
<td>proxy.process.socks.connections_successful</td>
</tr>
<tr>
<td>Connections in progress</td>
<td>proxy.process.socks.connections_currently_open</td>
</tr>
<tr>
<td>Logging</td>
<td></td>
</tr>
<tr>
<td>Currently open log files</td>
<td>proxy.process.log2.log_files_open</td>
</tr>
<tr>
<td>Space used for log files</td>
<td>proxy.process.log2.log_files_space_used</td>
</tr>
<tr>
<td>Number of access events logged</td>
<td>proxy.process.log2.event_log_access</td>
</tr>
<tr>
<td>Number of access events skipped</td>
<td>proxy.process.log2.event_log_access_skip</td>
</tr>
<tr>
<td>Number of error events logged</td>
<td>proxy.process.log2.event_log_error</td>
</tr>
</tbody>
</table>
Options are grouped as follows on the left side of the Configure pane:

- My Proxy, page 301
- Protocols, page 314
- Content Routing, page 329
- Security, page 334
- Subsystems, page 356
- Networking, page 362

My Proxy

The My Proxy options are:

- Basic, page 302
- Subscription, page 306
- UI Setup, page 307
- Snapshots, page 311
- Logs, page 313
# Basic

**Configure > My Proxy > Basic > General**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart</td>
<td>Restarts the proxy and manager services (the <code>content_gateway</code> and <code>content_manager</code> processes). You must restart the proxy and manager services after modifying certain configuration options. A message is displayed in the manager when a restart is required. <strong>IMPORTANT:</strong> In a cluster configuration, the Restart button restarts the proxy and manager services on all nodes in the cluster.</td>
</tr>
<tr>
<td>Proxy Name</td>
<td>Specifies the name of your Content Gateway node. By default, this is the hostname of the machine running Content Gateway. If this node is part of a cluster, this option specifies the name of the Content Gateway cluster. In a cluster, all nodes must share the same name. Valid characters for Proxy Name are: A-Z, a-z,0-9 and -_.~[]!$&amp;'()*+,;=</td>
</tr>
<tr>
<td>Alarm email</td>
<td>Specifies the email address to which Content Gateway sends alarm notifications.</td>
</tr>
</tbody>
</table>

## Features

<table>
<thead>
<tr>
<th>Protocols: FTP</th>
<th>When this option is enabled, Content Gateway accepts FTP requests from FTP clients. If this option is changed you must restart Content Gateway.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocols: HTTPS</td>
<td>Enables/disables Content Gateway HTTPS traffic management and security analysis. After selecting HTTPS On, you must provide additional information on the Configure &gt; Protocols &gt; HTTPS page and on the Configure &gt; SSL pages. See <em>Working With Encrypted Data</em>, page 141.</td>
</tr>
<tr>
<td>Networking: WCCP</td>
<td>Enable this option to use a WCCP v2-enabled router for transparent redirection to Content Gateway. WCCP v1 is not supported. See <em>Transparent interception with WCCP v2 devices</em>, page 50. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Networking: DNS Proxy</td>
<td>When this option is enabled, Content Gateway resolves DNS requests on behalf of clients. This option offloads remote DNS servers and reduces response time for DNS lookups. See <em>DNS Proxy Caching</em>, page 107.</td>
</tr>
</tbody>
</table>
### Networking: Virtual IP
When this option is enabled, Content Gateway maintains a pool of virtual IP addresses that it assigns to the nodes in a cluster as necessary. See *Virtual IP failover*, page 91.

### Networking: IPv6
When this option is enabled, Content Gateway provides support for IPv6. IPv6 addresses can be used on any dual stack Ethernet interface that services client and/or Internet traffic. IPv4 addresses must be used to communicate with all TRITON components.
To see a complete description of the feature and an important list of restrictions, see *Support for IPv6*, page 82.

### Networking: Web DLP
Enables a connection to TRITON AP-DATA. There are 2 options:
- Automatic registration through the TRITON Management Server
- ICAP communication to a remote Data Security Suite deployment (may be version 7.1, or earlier)

See *Working With Web DLP*, page 129.
If you change this option, you must restart Content Gateway.

### Networking: Web DLP: Integrated on-box
Enables registration with the on-box Web DLP components and the TRITON Management Server. See *Registering and configuring TRITON AP-DATA*, page 131.

### Networking: Web DLP: ICAP
Enables ICAP for use with TRITON AP-DATA and Data Security Suite. See *Configuring the ICAP client*, page 136.

### Security: SOCKS
When SOCKS is enabled, Content Gateway communicates with your SOCKS servers. See *Configuring SOCKS firewall integration*, page 187.
If you change this option, you must restart Content Gateway.

### Authentication: None
Content Gateway supports several types of user authentication.
When this option is selected, the proxy does not perform user authentication. This is the default setting.

### Authentication: Integrated Windows Authentication
When Integrated Windows Authentication (IWA) is enabled, users are authenticated by IWA before they are allowed access to content.
See *Integrated Windows Authentication*, page 199.
If you change this option, you must restart Content Gateway.
<table>
<thead>
<tr>
<th>Configuration Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication: LDAP</td>
<td>When LDAP is enabled, users are authenticated by an LDAP server before they are allowed access to content. See <a href="#">LDAP authentication</a>, page 207. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Authentication: Radius</td>
<td>When RADIUS is enabled, users are authenticated by a RADIUS server before they are allowed access to content. See <a href="#">RADIUS authentication</a>, page 210. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Authentication: Legacy NTLM</td>
<td>When legacy NTLM (NTLMSSP) is enabled, users in a Windows network are authenticated by a Domain Controller before they are allowed access to content. See <a href="#">Legacy NTLM authentication</a>, page 204. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Authentication: Rule-Based Authentication</td>
<td>When Rule-Based Authentication is enabled, users are authenticated based on the parameters of the rule that they match. Rule-based authentication supports multiple realm, multiple domain, and other user authentication scenarios. See <a href="#">Rule-Based Authentication</a>, page 213. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Authentication: Read authentication from child proxy</td>
<td>Enables or disables the reading of X-Authenticated-User and X-Forwarded-For header values in incoming requests. This option is disabled by default. Enable this option when Content Gateway is the parent (upstream) proxy in a chain and the child (downstream) proxy is sending X-Authenticated-User and X-Forwarded-For header values to facilitate authentication.</td>
</tr>
<tr>
<td>Authentication: Send authentication to parent proxy</td>
<td>Enables or disables the insertion of X-Authenticated-User header values in outgoing requests. This option is disabled by default. Enable this option when Content Gateway is the child (downstream) proxy in a chain and the parent (upstream) proxy wants X-Authenticated-User values to facilitate authentication.</td>
</tr>
</tbody>
</table>
## Configure > My Proxy > Basic > Clustering

<table>
<thead>
<tr>
<th>Configuration Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Cluster: Type</strong></td>
<td>Specifies the clustering mode:&lt;br&gt;  - Select <strong>Single Node</strong> to run this Content Gateway server as a single node. This node will not be part of a cluster.&lt;br&gt;  - Select <strong>Management Clustering</strong> to activate management clustering mode. The nodes in the cluster share configuration information and you can administer all the nodes at the same time.&lt;br&gt;  &lt;br&gt;  For complete information about clustering, see <em>Clusters, page 85.</em>&lt;br&gt;  If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td><strong>Cluster: Interface</strong></td>
<td>Specifies the interface on which Content Gateway communicates with other nodes in the cluster. For example, <em>eth1.</em>&lt;br&gt;  It is recommended that you use a dedicated secondary interface.&lt;br&gt;  Node configuration information is multicast, in plain text, to other Content Gateway nodes on the same subnet. Therefore, Websense recommends that clients be located on a separate subnet from Content Gateway nodes (multicast communications for clustering are not routed).&lt;br&gt;  On V-Series appliances, P1 (eth0) is the recommended interface. However, you may also use P2 (eth1) if you want to isolate cluster management traffic.&lt;br&gt;  See <em>Changing clustering configuration, page 86.</em>&lt;br&gt;  If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td><strong>Cluster: Multicast Group Address</strong></td>
<td>Specifies the multicast group address on which Content Gateway communicates with its cluster peers.&lt;br&gt;  See <em>Changing clustering configuration, page 86.</em></td>
</tr>
</tbody>
</table>

---

*Online Help ➤ 305*
**Subscription**

Configure > My Proxy > Subscription > Subscription Management

| Subscription Key | Displays the subscription key you received from Websense, Inc.  
If Content Gateway is used with TRITON AP-WEB, this is the subscription key you entered in the Web module of the TRITON Manager.  
If Content Gateway is deployed with only TRITON AP-DATA, you must enter your Content Gateway subscription key in this field. |

Configure > My Proxy > Subscription > Scanning

Policy Server	The IP address of the Websense Policy Server. This value is specified when Content Gateway is installed.
Port	The port used by Policy Server. The default port is 55806.
Filtering Service	Specify the IP address of the Websense Filtering Service. This value is specified when Content Gateway is installed.
Port	Specify the port used by Filtering Service. The default port is 15868.
Communication Timeout	Specifies the timeout, in milliseconds, in which Policy Server and Filtering Service must respond before a communication timeout condition occurs and the **Action for Communication Errors** setting is applied.
The default value is 5000 ms (5 seconds).	
Action for Communication Errors	Permits all traffic if communication with Policy Server or Filtering Service fails.
Blocks all traffic if communication with Policy Server or Filtering Service fails. |
## Scanning Data Files Update

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Delay time</strong></td>
<td>Specifies the length of time scanning data file downloads are delayed. The default value is No delay. See the Scanning Data Files Update section of Providing system information.</td>
</tr>
</tbody>
</table>

## UI Setup

Configure > My Proxy > UI Setup > General

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>UI Port</strong></td>
<td>Specifies the port on which browsers can connect to the Content Gateway manager. The default port is 8081. If you change this setting, you must restart Content Gateway.</td>
</tr>
<tr>
<td><strong>HTTPS: Enable/Disable</strong></td>
<td>Enables or disables support for SSL connections to the Content Gateway manager (enabled by default). SSL provides protection for remote administrative monitoring and configuration. To use SSL for Content Gateway manager connections, you must install an SSL certificate on the Content Gateway server machine. For more information, see Using SSL for secure administration, page 180.</td>
</tr>
<tr>
<td><strong>HTTPS: Certificate File</strong></td>
<td>Specifies the name of the SSL certificate file used to authenticate users who want to access the Content Gateway manager.</td>
</tr>
<tr>
<td><strong>Monitor Refresh Rate</strong></td>
<td>Specifies how often Content Gateway manager refreshes the statistics on the Monitor pane. The default value is 30 seconds.</td>
</tr>
<tr>
<td><strong>Default Help Language</strong></td>
<td>Specifies the language that Content Gateway Manager Help displays by default. If a page is not available in the default language, another language may be substituted.</td>
</tr>
</tbody>
</table>
### Configure > My Proxy > UI Setup > Login

<table>
<thead>
<tr>
<th>Administrator: Login</th>
<th>Specifies the administrator login. The default is 'admin'. The administrator login is the master login that has access to both Configure and Monitor mode in the Content Gateway manager.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Options</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
</tbody>
</table>
| Administrator: Password | Lets you change the administrator password that controls access to the Content Gateway manager. Enter the current password in the **Old Password** field. Enter the new password in the **New Password** field, re-enter it in the **New Password (Retype)** field, and then click **Apply**. Passwords must be 8 to 15 characters and include at least one:
|                         | • Uppercase character  | |
|                         | • Lowercase character  |
|                         | • Number               |
|                         | • Special character    |
| Supported characters include: | ! # % & ' ( ) * + , . / ; <= > ? @ [ ] ^ _ {  |
|                         | | } ~  |
| The following special characters are not supported: | Space $ : ` \ " |
| During installation, you select the administrator password. The installer automatically encrypts the password and stores the encryptions in the **records.config** file so that no one can read them. Each time you change the password in the Content Gateway manager, Content Gateway updates the **records.config** file. If you forget the administrator password and cannot access the Content Gateway manager, see **Accessing the Content Gateway manager if you forget the master administrator password**, page 15. |
### Additional Users

Lists the current user accounts and lets you add new user accounts. User accounts determine who has access to the Content Gateway manager and which activities they can perform. You can create a list of user accounts if a single administrator login and password is not sufficient security for your needs.

To create a new account, enter the user login in the **New User** field, and then enter the user password in the **New Password** field. Retype the user password in the **New Password (Retype)** field, and then click **Apply**.

Passwords must be 8 to 15 characters and include at least one:
- Uppercase character
- Lowercase character
- Number
- Special character

Supported characters include:

```
! # % & ' () * + , . / ; <= > ? @ [] ^ _ { } \ ~
```

The following special characters are not supported:

- Space
- $ :`

Information for the new user is displayed in the table. From the **Access** drop-down list in the table, select the activities that the new user can perform (Monitor, Monitor and View Configuration, or Monitor and Modify Configuration). For more information about user accounts, see *Creating a list of user accounts*, page 179.

---

### Configure > My Proxy > UI Setup > Access

| Access Control | Displays a table listing the rules in the `mgmt_allow.config` file. Rules specify the remote hosts allowed to access the Content Gateway manager. The entries in this file ensure that only authenticated users can change configuration options and view performance and network traffic statistics.
| Refresh | Updates the table to display the most up-to-date rules in the `mgmt_allow.config` file.
| Edit File | Opens the configuration file editor so that you can edit and add rules to the `mgmt_allow.config` file. |
**mgmt_allow.config Configuration File Editor**

Rule display box	Lists the `mgmt_allow.config` file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list. Content Gateway applies the rules in the order listed, starting from the top.
Add	Adds a new rule to the rule display box at the top of the configuration file editor page.
Set	Updates the rule display box at the top of the configuration file editor page.
IP Action	Lists the type of rules you can add. An `ip_allow` rule allows the remote hosts specified in the Source IP field to access the Content Gateway manager. An `ip_deny` rule denies the remote hosts specified in the Source IP field access to the Content Gateway manager.
Source IP	Specifies the IP addresses that are allowed or denied access to the Content Gateway manager. You can enter a single IP address (111.111.111.1) or a range of IP addresses (0.0.0.0-255.255.255.255).
Apply	Applies the configuration changes.
Close	Exits the configuration file editor. Click **Apply** before you click **Close**; otherwise, all configuration changes will be lost.

**Snapshots**

Help | Content Gateway | Version 8.1.x

**Configure > My Proxy > Snapshots > File System**

| Change Snapshot Directory | Specifies the directory in which snapshots are stored on this Content Gateway node. |
| Snapshots: Save Snapshot | Specifies the name of the configuration snapshot you want to take. Click **Apply** to save the configuration on the local node. Content Gateway saves the configuration snapshot in the directory specified in the **Change Snapshot Directory** field. It is recommended that you take a snapshot before performing system maintenance or attempting to tune system performance. Taking a snapshot takes only a few seconds and can save you hours of correcting configuration mistakes. |
### Configurations Options

<table>
<thead>
<tr>
<th>Snapshots: Restore/Delete Snapshot</th>
<th>Lists the snapshots that are stored on this node. Select the snapshot that you want to restore or delete from the drop-down list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snapshots: Restore Snapshot from “directory_name” Directory</td>
<td>Restores the snapshot selected in the Restore/Delete Snapshot drop-down box. In a cluster configuration, snapshots are restored on all nodes in the cluster.</td>
</tr>
<tr>
<td>Snapshots: Delete Snapshot from “directory_name” Directory</td>
<td>Deletes the snapshot selected in the Restore/Delete Snapshot drop-down box.</td>
</tr>
</tbody>
</table>

### Configure > My Proxy > Snapshots > FTP server

<table>
<thead>
<tr>
<th>FTP Server</th>
<th>Specifies the name of the FTP server from which you want to restore a configuration snapshot or to which you want to save a configuration snapshot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login</td>
<td>Specifies the login needed to access the FTP server.</td>
</tr>
<tr>
<td>Password</td>
<td>Specifies the password needed to access the FTP server.</td>
</tr>
<tr>
<td>Remote Directory</td>
<td>Specifies the directory on the FTP server from which you want restore, or in which you want to save a configuration snapshot.</td>
</tr>
<tr>
<td>Restore Snapshot</td>
<td>Lists the configuration snapshots on the FTP server that you can restore. This field appears after you have logged on to the FTP server successfully.</td>
</tr>
<tr>
<td>Save Snapshot to FTP Server</td>
<td>Specifies the name of the configuration snapshot you want to take and save on the FTP server. This field appears after you have logged on to the FTP server successfully.</td>
</tr>
</tbody>
</table>
Logs

Configure > My Proxy > Logs > System

<table>
<thead>
<tr>
<th>Log File</th>
<th>Lists the system log files you can view, delete or copy to your local system. Content Gateway lists the system log files logged with the system-wide logging facility syslog under the daemon facility.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action: Display the selected log file</td>
<td>When this option is enabled, Content Gateway displays the first MB of the system log file selected in the Log File drop-down list. To view the entire file, select “Save the selected log file in local filesystem” and view the file with a local viewer.</td>
</tr>
<tr>
<td>Action: Display last lines of the selected file</td>
<td>When this option is enabled, Content Gateway displays the last specified number of lines in the selected system log file.</td>
</tr>
<tr>
<td>Action: Display lines that match in the selected log file</td>
<td>When this option is enabled, Content Gateway displays all the lines in the selected system log file that match the specified string.</td>
</tr>
<tr>
<td>Action: Remove the selected log file</td>
<td>When this option is enabled, Content Gateway deletes the selected log file.</td>
</tr>
<tr>
<td>Action: Save the selected log file in local filesystem</td>
<td>When this option is enabled, Content Gateway saves the selected log file on the local system in a location you specify.</td>
</tr>
</tbody>
</table>

Configure > My Proxy > Logs > Access

<table>
<thead>
<tr>
<th>Log File</th>
<th>Lists the event or error log files you can view, delete, or copy to your local system. Content Gateway lists the event log files located in the directory specified in the Logging Directory field under Subsystems/Logging and by the configuration variable proxy.config.log2.logfile_dir in the records.config file. The default directory is logs in the Content Gateway installation directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action: Display the selected log file</td>
<td>When this option is enabled, Content Gateway displays the first MB of the event or error log file selected in the Log File drop-down list. To view the entire file, select “Save the selected log file in local filesystem” and view the file with a local viewer.</td>
</tr>
</tbody>
</table>
The Protocol configuration options are divided into the following categories:

**HTTP**, page 314

**HTTP Responses**, page 324

**HTTP Scheduled Update**, page 325

**HTTPS**, page 327

**FTP**, page 328

### HTTP

Action: Display last lines of the selected file

When this option is enabled, Content Gateway displays the last specified number of lines in the event or error log file selected from the Log File drop-down list.

Action: Display lines that match in the selected log file

When this option is enabled, Content Gateway displays all the lines in the selected event or error log file that match the specified string.

Remove the selected log file

When this option is enabled, Content Gateway deletes the selected log file.

Action: Save the selected log file in local filesystem

When this option is enabled, Content Gateway saves the selected log file on the local system in a location you specify.

HTTP Proxy Server Port

Specifies the port that Content Gateway uses when acting as a Web proxy server for HTTP traffic or when serving HTTP requests transparently. The default port is 8080. If you change this option, you must restart Content Gateway.

Secondary HTTP Proxy Server Ports

For explicit proxy configurations only, specifies additional ports on which Content Gateway listens for HTTP traffic.

Transparent proxy configurations always send all HTTP traffic to port 8080.
### Unqualified Domain Name Expansion

Enables or disables `.com` name expansion. When this option is enabled, Content Gateway attempts to resolve unqualified hostnames by redirecting them to the expanded address, prepended with `www`, and appended with `.com`. For example, if a client makes a request to `company`, Content Gateway redirects the request to `www.company.com`.

If local domain expansion is enabled (see `DNS Resolver`, page 375), Content Gateway attempts local domain expansion before `.com` domain expansion; Content Gateway tries `.com` domain expansion only if local domain expansion fails.

### Send HTTP 1.1 by Default

Enables the sending of HTTP 1.1 as the first request to the origin server (the default). If the origin server replies with HTTP 1.0, Content Gateway switches to HTTP 1.0 (most origin servers use HTTP 1.1). When disabled, HTTP 1.0 is used in the first request to the origin server. If the origin server replies with HTTP 1.1, Content Gateway switches to HTTP 1.1.

### Reverse DNS

Enables reverse DNS lookup when the URL has an IP address (instead of a hostname) and there are rules in `filter.config`, `cache.config`, or `parent.config`. This is necessary when rules are based on destination hostname and domain name.

### Tunnel Ports

Specifies the ports on which Content Gateway allows tunneling. This is a space separated list that also accepts port ranges (e.g. 1-65535).

- When SSL is not enabled, all traffic destined for the specified ports is allowed to tunnel to an origin server.
- When SSL is enabled, traffic to any port that is also listed in the `HTTPS ports` field is not tunneled, but is decrypted and filtering policy is applied.

### HTTPS ports

When SSL support is enabled, specifies ports on which HTTPS traffic is decrypted and policy is applied. Note that Content Gateway receives HTTPS traffic on the port specified in `Configure > Protocols > HTTPS > HTTPS Proxy: Server Port`.

- When SSL support is disabled, traffic to these ports is not decrypted. However, filtering policy is applied based on:
  - Explicit proxy: the server hostname in the `CONNECT` request.
  - Transparent proxy: the SNI hostname or the server hostname in the server’s certificate. If the hostname in the server’s certificate includes a wildcard (`*`), the lookup is performed on the destination IP address.
<table>
<thead>
<tr>
<th>Configuration Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP over HTTP: Anonymous Password</td>
</tr>
<tr>
<td>FTP over HTTP: Data Connection Mode</td>
</tr>
</tbody>
</table>

**Configure > Protocols > HTTP > Cacheability**

<table>
<thead>
<tr>
<th>Caching: HTTP Caching</th>
<th>Enables or disables HTTP caching. When this option is enabled, Content Gateway serves HTTP requests from the cache. When this option is disabled, Content Gateway acts as a proxy server and forwards all HTTP requests directly to the origin server. Note: HTTPS content is never cached.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caching: FTP over HTTP Caching</td>
<td>Enables or disables FTP over HTTP caching. When this option is enabled, Content Gateway serves FTP requests from HTTP clients from the cache. When this option is disabled, Content Gateway acts as a proxy server and forwards all FTP requests from HTTP clients directly to the FTP server.</td>
</tr>
</tbody>
</table>
| Behavior: Required Headers | Specifies the minimum header information required for an HTTP object to be cacheable.  
Select **An Explicit Lifetime Header** to cache only HTTP objects with **Expires or max-age** headers.  
Select **A Last-Modified Header** to cache only HTTP objects with **lastmodified** headers.  
Select **No Required Headers** to cache HTTP objects that do not have **Expires, max-age, or last-modified** headers. This is the default option.  
**Caution:** By default, Content Gateway caches all objects (including objects with no headers). It is recommended that you change the default setting only for specialized proxy situations. If you configure Content Gateway to cache only HTTP objects with **Expires or max-age** headers, the cache hit rate is reduced (very few objects have explicit expiration information). |
| Behavior: When to Revalidate | Specifies how Content Gateway evaluates HTTP object freshness in the cache:  
Select **Never Revalidate** to never revalidate HTTP objects in the cache with the origin server (Content Gateway considers all HTTP objects in the cache to be fresh).  
Select **Always Revalidate** to always revalidate HTTP objects in the cache with the origin server (Content Gateway considers all HTTP objects in the cache to be stale).  
Select **Revalidate if Heuristic Expiration** to verify the freshness of an HTTP object with the origin server if the object contains no **Expires or Cache-Control** headers; Content Gateway considers all HTTP objects without **Expires or Cache-Control** headers to be stale.  
Select **Use Cache Directive or Heuristic** to verify the freshness of an HTTP object with the origin server when Content Gateway considers the object in the cache to be stale according to object headers, absolute freshness limit, and/or rules in the **cache.config** file. This is the default option.  
For more information about revalidation, see **Revalidating HTTP objects, page 25.** |
<table>
<thead>
<tr>
<th>Configuration Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior: Add “no-cache” to MSIE Requests</td>
</tr>
<tr>
<td>Specifies when Content Gateway adds <strong>no-cache</strong> headers to requests from Microsoft Internet Explorer. Certain versions of Microsoft Internet Explorer do not request cache reloads from transparent caches when the user presses the browser <strong>Refresh</strong> button. This can prevent content from being loaded directly from the origin servers. You can configure Content Gateway to treat Microsoft Internet Explorer requests more conservatively, providing fresher content at the cost of serving fewer documents from cache. Select <strong>To All MSIE Requests</strong> to always add <strong>no-cache</strong> headers to all requests from Microsoft Internet Explorer. Select <strong>To IMS MSIE Requests</strong> to add <strong>no-cache</strong> headers to IMS (If Modified Since) Microsoft Internet Explorer requests. Select <strong>Not to Any MSIE Requests</strong> to never add <strong>no-cache</strong> headers to requests from Microsoft Internet Explorer.</td>
</tr>
<tr>
<td>Behavior: Ignore “no-cache” in Client Requests</td>
</tr>
<tr>
<td>When this option is enabled, Content Gateway ignores <strong>no-cache</strong> headers in client requests and serves the requests from the cache. When this option is disabled, Content Gateway does not serve requests with <strong>no-cache</strong> headers from the cache but forwards them to the origin server.</td>
</tr>
<tr>
<td>Freshness: Minimum Heuristic Lifetime</td>
</tr>
<tr>
<td>Specifies the minimum amount of time that an HTTP object can be considered fresh in the cache.</td>
</tr>
<tr>
<td>Freshness: Maximum Heuristic Lifetime</td>
</tr>
<tr>
<td>Specifies the maximum amount of time that an HTTP object can be considered fresh in the cache.</td>
</tr>
<tr>
<td>Freshness: FTP Document Lifetime</td>
</tr>
<tr>
<td>Specifies the maximum amount of time that an FTP file can stay in the cache. This option affects FTP requests from HTTP clients only.</td>
</tr>
<tr>
<td>Maximum Alternates</td>
</tr>
<tr>
<td>Specifies the maximum number of alternate versions of HTTP objects Content Gateway can cache. <strong>Caution:</strong> If you enter 0 (zero), there is no limit to the number of alternates cached. If a popular URL has thousands of alternates, you might observe increased cache hit latencies (transaction times) as Content Gateway searches over the thousands of alternates for each request. In particular, some URLs can have large numbers of alternates due to cookies. If Content Gateway is set to vary on cookies, you might encounter this problem.</td>
</tr>
<tr>
<td>Vary Based on Content Type: Enable/ Disable</td>
</tr>
<tr>
<td>Enables or disables caching of alternate versions of HTTP documents that do not contain the <strong>Vary</strong> header. If no <strong>Vary</strong> header is present, Content Gateway varies on the headers specified below, depending on the document’s content type.</td>
</tr>
<tr>
<td>Vary by Default on Text</td>
</tr>
<tr>
<td>Specifies the header field on which Content Gateway varies for text documents.</td>
</tr>
<tr>
<td><strong>Vary by Default on Images</strong></td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td><strong>Vary by Default on Other Document Types</strong></td>
</tr>
<tr>
<td><strong>Dynamic Caching:</strong> Caching Documents with Dynamic URLs</td>
</tr>
<tr>
<td><strong>Dynamic Caching:</strong> Caching Response to Cookies</td>
</tr>
<tr>
<td><strong>Caching Policy/Forcing Document Caching</strong></td>
</tr>
<tr>
<td><strong>Refresh</strong></td>
</tr>
<tr>
<td><strong>Edit File</strong></td>
</tr>
</tbody>
</table>

### **cache.config Configuration File Editor**

- **Rule display box**
  - Lists the cache.config file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.

- **Add**
  - Adds a new rule to the rule display box at the top of the configuration file editor page.

- **Set**
  - Updates the rule display box at the top of the configuration file editor page.
**Rule Type** | Lists the type of rules you can add to the `cache.config` file:
---|---
A **never-cache** rule configures Content Gateway to never cache specified objects.
An **ignore-no-cache** rule configures Content Gateway to ignore all **Cache-Control: no-cache** headers.
An **ignore-client-no-cache** rule configures Content Gateway to ignore **Cache-Control: no-cache** headers from client requests.
An **ignore-server-no-cache** rule configures Content Gateway to ignore **Cache-Control: no-cache** headers from origin server responses.
A **pin-in-cache** rule configures Content Gateway to keep objects in the cache for a specified time.
A **revalidate** rule configures Content Gateway to consider objects fresh in the cache for a specified time.
A **ttl-in-cache** rule configures Content Gateway to serve certain HTTP objects from the cache for the amount of time specified in the **Time Period** field regardless of certain caching directives in the HTTP request and response headers.

**Primary Destination Type**	Lists the primary destination types:
**dest_domain** is a requested domain name.
**dest_host** is a requested hostname.
**dest_ip** is a requested IP address.
**url_regex** is a regular expression to be found in a URL.

**Primary Destination Value** | Specifies the value of the primary destination type. For example, if the Primary Destination Type is **dest_ip**, the value for this field can be 123.456.78.9.

**Additional Specifier: Time Period**	Specifies the amount of time that applies to the **revalidate**, **pin-in-cache**, and **ttl-in-cache** rule types. The following time formats are allowed:
d for days (for example 2d)
h for hours (for example, 10h)
m for minutes (for example, 5m)
s for seconds (for example, 20s)
mixed units (for example, 1h15m20s)

**Secondary Specifiers: Time** | Specifies a time range, such as 08:00-14:00.

**Secondary Specifiers: Prefix** | Specifies a prefix in the path part of a URL.

**Secondary Specifiers: Suffix** | Specifies a file suffix in the URL.

**Secondary Specifiers: Source IP** | Specifies the IP address of the client.

**Secondary Specifiers: Port** | Specifies the port in a requested URL.
### Configuration Options

<table>
<thead>
<tr>
<th>Secondary Specifiers:</th>
<th>Specifies a request URL method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Specifiers:</th>
<th>Specifies the protocol of a requested URL.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary Specifiers:</th>
<th>Specifies a request header User-Agent value.</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Agent</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apply</th>
<th>Applies the configuration changes.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Close</th>
<th>Exits the configuration file editor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click Apply before you click Close; otherwise, all configuration changes will be lost.</td>
<td></td>
</tr>
</tbody>
</table>

### Configure > Protocols > HTTP > Privacy

<table>
<thead>
<tr>
<th>Insert Headers: Client-IP</th>
<th>When enabled, Content Gateway inserts the Client-IP header into outgoing requests to retain the client’s IP address. This option is mutually exclusive with the Remove Headers: Client-IP option. When Insert Headers: Client-IP is enabled the Remove Headers: Client-IP option is automatically disabled. Insert Headers: Client-IP and Remove Headers: Client-IP can both be disabled.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Insert Headers: Via</th>
<th>When enabled, Content Gateway inserts a Via header into the outgoing request. The Via header informs the destination server of proxies through which the request was sent.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Insert Headers: X-Forwarded-For</th>
<th>When enabled, Content Gateway inserts an X-Forwarded-For header into the outgoing request. The X-Forwarded-For value contains the originating IP address.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Remove Headers: Client-IP</th>
<th>When this option is enabled, Content Gateway removes the Client-IP header from outgoing requests to protect the privacy of your users. This option is mutually exclusive with the Insert Headers: Client-IP option. When Remove Headers: Client-IP is enabled the Insert Headers: Client-IP option is automatically disabled. Remove Headers: Client-IP and Insert Headers: Client-IP can both be disabled.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Remove Headers: Cookie</th>
<th>When this option is enabled, Content Gateway removes the Cookie header from outgoing requests to protect the privacy of your users. The Cookie header often identifies the user that makes a request.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Remove Headers: From</th>
<th>When this option is enabled, Content Gateway removes the From header from outgoing requests to protect the privacy of your users. The From header identifies the client’s email address.</th>
</tr>
</thead>
</table>
### Remove Headers: Referer
When this option is enabled, Content Gateway removes the **Referer** header from outgoing requests to protect the privacy of your users. The **Referer** header identifies the Web link that the client selects.

### Remove Headers: User-Agent
When this option is enabled, Content Gateway removes the **User-Agent** header from outgoing requests to protect the privacy of your users. The **User-Agent** header identifies the agent that is making the request, usually a browser.

### Remove Headers: Remove Others
Specifies headers other than **From**, **Referer**, **User-Agent**, and **Cookie**, that you want to remove from outgoing requests to protect the privacy of your users.

Use a comma separated list for multiple entries.

---

### Configure > Protocols > HTTP > Timeouts

See [this knowledge base article](#) for a discussion of HTTP timeout options.

#### Keep-Alive Timeouts:
- **Client**
  Specifies (in seconds) how long Content Gateway keeps connections to clients open for a subsequent request after a transaction ends. Each time Content Gateway opens a connection to accept a client request, it handles the request and then keeps the connection alive for the specified timeout period. If the client does not make another request before the timeout expires, Content Gateway closes the connection. If the client does make another request, the timeout period starts again.
  The client can close the connection at any time.

#### Keep-Alive Timeouts:
- **Origin Server**
  Specifies (in seconds) how long Content Gateway keeps connections to origin servers open for a subsequent transfer of data after a transaction ends. Each time Content Gateway opens a connection to download data from an origin server, it downloads the data and then keeps the connection alive for the specified timeout period. If Content Gateway does not need to make a subsequent request for data before the timeout expires, it closes the connection. If it does, the timeout period starts again.
  The origin server can close the connection at any time.

#### Inactivity Timeouts:
- **Client**
  Specifies how long Content Gateway keeps connections to clients open if a transaction stalls. If Content Gateway stops receiving data from a client or the client stops reading the data, Content Gateway closes the connection when this timeout expires.
  The client can close the connection at any time.
<table>
<thead>
<tr>
<th>Configuration Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inactivity Timeouts:</strong></td>
<td>Specifies how long Content Gateway keeps connections to origin servers open if the transaction stalls. If Content Gateway stops receiving data from an origin server, it does not close the connection until this timeout has expired. The origin server can close the connection at any time.</td>
</tr>
<tr>
<td><strong>Origin Server</strong></td>
<td>Specifies how long Content Gateway keeps connections to origin servers open if the transaction stalls. If Content Gateway stops receiving data from an origin server, it does not close the connection until this timeout has expired. The origin server can close the connection at any time.</td>
</tr>
<tr>
<td><strong>Active Timeouts:</strong></td>
<td>Specifies how long Content Gateway remains connected to a client. If the client does not finish making a request (reading and writing data) before this timeout expires, Content Gateway closes the connection. The default value of 0 (zero) specifies that there is no timeout. The client can close the connection at any time.</td>
</tr>
<tr>
<td><strong>Client</strong></td>
<td>Specifies how long Content Gateway remains connected to a client. If the client does not finish making a request (reading and writing data) before this timeout expires, Content Gateway closes the connection. The default value of 0 (zero) specifies that there is no timeout. The client can close the connection at any time.</td>
</tr>
<tr>
<td><strong>Origin Server Request</strong></td>
<td>Specifies how long Content Gateway waits for fulfillment of a connection request to an origin server. If Content Gateway does not establish connection to an origin server before the timeout expires, Content Gateway terminates the connection request. The default value of 0 (zero) specifies that there is no timeout. The origin server can close the connection at any time.</td>
</tr>
<tr>
<td><strong>Origin Server Response</strong></td>
<td>Specifies how long Content Gateway waits for a response from the origin server.</td>
</tr>
<tr>
<td><strong>FTP Control Connection Timeout</strong></td>
<td>Specifies how long Content Gateway waits for a response from an FTP server. If the FTP server does not respond within the specified time, Content Gateway abandons the client’s request for data. This option affects FTP requests from HTTP clients only. The default value is 300.</td>
</tr>
</tbody>
</table>
## HTTP Responses

**Configure > Protocols > HTTP Responses > General**

<table>
<thead>
<tr>
<th>Response Suppression Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always Suppressed</td>
<td>If Content Gateway detects an HTTP problem with a particular client transaction (such as unavailable origin servers, authentication requirements, and protocol errors), it sends an HTML response to the client browser. Content Gateway has a set of hard-coded default response pages that explain each HTTP error in detail to the client. Select <strong>Always Suppressed</strong> if you do not want to send HTTP responses to clients.</td>
</tr>
<tr>
<td>Intercepted Traffic Only</td>
<td>Select <strong>Intercepted Traffic Only</strong> if you want to send HTTP responses to nontransparent traffic only. (This option is useful when Content Gateway is running transparently and you do not want to indicate the presence of a cache.)</td>
</tr>
<tr>
<td>Never Suppressed</td>
<td>Select <strong>Never Suppressed</strong> if you want to send HTTP responses to all clients. If you change this option, you must restart Content Gateway.</td>
</tr>
</tbody>
</table>

**Configure > Protocols > HTTP Responses > Custom**

<table>
<thead>
<tr>
<th>Custom Responses</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled Language-Targeted Response</td>
<td>You can customize the responses Content Gateway sends to clients. By default, the responses you can customize are located in the Content Gateway <strong>config/body_factory/default</strong> directory. Select <strong>Enabled Language-Targeted Response</strong> to send your custom responses to clients in the language specified in the <strong>Accept-Language</strong> header.</td>
</tr>
<tr>
<td>Enabled in “default” Directory Only</td>
<td>Select <strong>Enabled in “default” Directory Only</strong> to send the custom responses located in the default directory to clients. Select <strong>Disabled</strong> to disable the custom responses. If <strong>Never Suppressed</strong> or <strong>Intercepted Traffic Only</strong> is selected for the <strong>Response Suppression Mode</strong> option, Content Gateway sends the hard-coded default responses. If you change this option, you must restart Content Gateway.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custom Response Logging</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>When enabled, Content Gateway sends a message to the error log each time custom responses are used or modified. If you change this option, you must restart Content Gateway.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Custom Response Template Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies the directory where the custom responses are located. The default location is the Content Gateway <strong>config/body_factory</strong> directory. If you change this option, you must restart Content Gateway.</td>
<td></td>
</tr>
</tbody>
</table>
Incorporating images, animated gifs, and Java applets on the response page

Content Gateway can respond to clients with only a single text or HTML document. However, you can provide references on your custom response pages to images, animated gifs, Java applets, or objects other than text that are located on a Web server. Add links in the body_factory template files in the same way you would for any image in an HTML document, with the full URL in the SRC attribute.

It is recommended that you do not run the Web server and Content Gateway on the same system, to prevent both programs from trying to serve documents on the same port number.

HTTP Scheduled Update

Configure > Protocols > HTTP Scheduled Updates > General

<table>
<thead>
<tr>
<th>Scheduled Update</th>
<th>Enables or disables the scheduled update option. When this option is enabled, Content Gateway can automatically update certain objects in the local cache at a specified time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Concurrent Updates</td>
<td>Specifies the maximum number of simultaneous update requests allowed at any point. This option enables you to prevent the scheduled update process from overburdening the host. The default value is 100.</td>
</tr>
<tr>
<td>Retry on Update Error: Count</td>
<td>Specifies the number of times Content Gateway retries the scheduled update of a URL in the event of failure. The default value is 10 times.</td>
</tr>
<tr>
<td>Retry on Update Error: Interval</td>
<td>Specifies the delay in seconds between each scheduled update retry for a URL in the event of failure. The default value is 2 seconds.</td>
</tr>
</tbody>
</table>
### Configure > Protocols > HTTP Scheduled Updates > Update URLs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force Immediate Update</td>
<td>When enabled, Content Gateway overrides the scheduling expiration time for all scheduled update entries and initiates updates every 25 seconds.</td>
</tr>
<tr>
<td>Scheduled Object Update</td>
<td>Displays a table listing the rules in the <code>update.config</code> file that control how Content Gateway performs a scheduled update of specific local cache content.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date rules in the <code>update.config</code> file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor so that you can edit and add rules to the <code>update.config</code> file.</td>
</tr>
</tbody>
</table>

#### update.config Configuration File Editor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule display box</td>
<td>Lists the <code>update.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>URL</td>
<td>Specifies the URL to be updated.</td>
</tr>
<tr>
<td>Request Headers (Optional)</td>
<td>Specifies the list of headers (separated by semi-colons) passed in each GET request. You can define any request header that conforms to the HTTP specification. The default is no request header.</td>
</tr>
<tr>
<td>Offset Hour</td>
<td>Specifies the base hour used to derive the update periods. The range is 00-23 hours.</td>
</tr>
<tr>
<td>Interval</td>
<td>The interval, in seconds, at which updates should occur, starting at Offset Hour.</td>
</tr>
<tr>
<td>Recursion Depth</td>
<td>The depth to which referenced URLs are recursively updated, starting at the given URL. For example, a recursion depth of 1 will update the given URL, as well as all URLs immediately referenced by links from the original URL.</td>
</tr>
</tbody>
</table>
HTTPS

Configure > Protocols > HTTPS

This page is displayed only when HTTPS is enabled on Configure > My Proxy > Basic > General

<table>
<thead>
<tr>
<th>HTTPS Proxy Server Port</th>
<th>Specifies the port that Content Gateway uses when acting as a Web proxy server for HTTPS traffic. The default value is 8080. See also, Configure &gt; Protocols &gt; HTTP &gt; General: HTTPS Ports.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Skype</td>
<td>Enables/disables the tunneling of Skype traffic when HTTPS is enabled and Content Gateway is an explicit proxy. To complete the configuration, you must ensure that all users who are allowed to use Skype have a Filtering policy that permits internet telephony. This is required regardless of whether Skype is used with HTTPS enabled or not. Also, if Skype is not prevented, after the handshake it will route traffic over a non-HTTP port. To force Skype traffic to go through Content Gateway, a GPO should be used, as described in the Skype IT Administrators Guide. Note: This option is not necessary if HTTPS is not enabled. Note: This option is not valid when Content Gateway is a transparent proxy.</td>
</tr>
</tbody>
</table>
Configuration Options

| Tunnel Unknown Protocols | Enables and disables tunneling of HTTPS requests when the SSL handshake results in an unknown protocol error.  
**Tunneled connections are not decrypted or inspected.**  
When Content Gateway is an explicit proxy, a URL lookup is performed and policy is applied before the SSL connection request is made with the server. Therefore, tunneled transactions appear in the TRITON AP-WEB transaction log.  
When Content Gateway is a transparent proxy, if there is an SNI a URL lookup is done on the hostname in the SNI. Otherwise no URL lookup is possible and tunneled transactions are not logged. This is because an initial connection with the server is required to get the Common Name from the SSL certificate. It is used for the URL lookup. If the connection handshake fails and this option is enabled, the connection is tunneled without the proxy being aware of it.  
**Important:** This setting persists after the HTTPS feature is disabled (on Configure > My Proxy > Basic > General). Therefore, disable this option before disabling HTTPS support. |

**FTP**

Help | Content Gateway | Version 8.1.x

---

**Note**

The FTP configuration options appear on the Configure pane only if you have enabled FTP processing in the Features table on the Configure > My Proxy > Basic > General tab.

**Configure > Protocols > FTP > General**

<table>
<thead>
<tr>
<th>FTP Proxy Server Port</th>
<th>Specifies the port that Content Gateway uses to accept FTP requests. The default port is 2121.</th>
</tr>
</thead>
</table>
| Listening Port Configuration | Specifies how FTP opens a listening port for a data transfer.  
Select Default Settings to let the operating system choose an available port. Content Gateway sends 0 and retrieves the new port number if the listen succeeds.  
Select Specify Range if you want the listening port to be determined by the range of ports specified in the Listening Port (Max) and Listening Port (Min) fields. |
**Configuration Options**

| Default Data Connection Method | Specifies the default method used to set up data connections with the FTP server. Select **Proxy Sends PASV** to send a PASV to the FTP server and let the FTP server open a listening port. Select **Proxy Sends PORT** to set up a listening port on the Content Gateway side of the connection. |
| Shared Server Connections | When enabled, server control connections can be shared between multiple anonymous FTP clients. |

**Configure > Protocols > FTP > Timeouts**

Keep-Alive Timeout: Server Control	Specifies the timeout value when the FTP server control connection is not used by any FTP clients. The default value is 90 seconds.
Inactivity Timeouts: Client Control	Specifies how long FTP client control connections can remain idle. The default value is 900 seconds.
Inactivity Timeouts: Server Control	Specifies how long the FTP server control connection can remain idle. The default value is 120 seconds.
Active Timeouts: Client Control	Specifies how long FTP client control connections can remain open. The default value is 14400 seconds.
Active Timeouts: Server Control	Specifies how long the FTP server control connection can remain open. The default value is 14400 seconds.

**Content Routing**

The Content Routing configuration options are divided into the following categories:

- **Hierarchies**, page 330
- **Mapping and Redirection**, page 332
- **Browser Auto-Config**, page 334
## Hierarchies

Configure > Content Routing > Hierarchies

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Proxy</td>
<td>Enables or disables the HTTP parent caching option. When this option is enabled, Content Gateway can participate in an HTTP cache hierarchy. You can point your Content Gateway server at a parent network cache (either another Content Gateway server or a different caching product) to form a cache hierarchy where a child cache relies upon a parent cache in fulfilling client requests.) See <a href="#">HTTP cache hierarchies</a>, page 95.</td>
</tr>
<tr>
<td>No DNS and Just Forward to Parent</td>
<td>When enabled, and if HTTP parent caching is enabled, Content Gateway does no DNS lookups on requested hostnames. If rules in the <code>parent.config</code> file are set so that only selected requests are sent to a parent proxy, Content Gateway skips name resolution only for requests that are going to the parent proxy. Name resolution is performed as usual for requests that are not sent to a parent proxy. If the parent proxy is down and the child proxy can go directly to origin servers, the child performs DNS resolution.</td>
</tr>
<tr>
<td>Uncacheable Requests Bypass Parent</td>
<td>When enabled, and if parent caching is enabled, Content Gateway bypasses the parent proxy for uncacheable requests.</td>
</tr>
<tr>
<td>HTTPS Requests Bypass Parent</td>
<td>When enabled, Content Gateway bypasses the parent proxy for HTTPS requests.</td>
</tr>
<tr>
<td>Tunnel Requests Bypass Parent</td>
<td>When enabled, Content Gateway bypasses parent proxy for non-HTTPS tunnel requests.</td>
</tr>
<tr>
<td>Parent Proxy Cache Rules</td>
<td>Displays a table listing the rules in the <code>parent.config</code> file that identify the HTTP parent proxies used in an HTTP cache hierarchy and configure selected URL requests to bypass parent proxies. Rules are applied from the list top-down; the first match is applied.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date rules in the <code>parent.config</code> file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor so that you can edit and add rules to the <code>parent.config</code> file.</td>
</tr>
<tr>
<td>rule display box</td>
<td>Lists the <code>parent.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
</tbody>
</table>
### Configuration Options

<table>
<thead>
<tr>
<th>Set</th>
<th>Updates the rule display box at the top of the configuration file editor page.</th>
</tr>
</thead>
</table>
| **Primary Destination Type** | Lists the primary destination types:  
|  | **dest_domain** is a requested domain name.  
|  | **dest_host** is a requested hostname.  
|  | **dest_ip** is a requested IP address.  
|  | **url_regex** is a regular expression to be found in a URL. |
| **Primary Destination Value** | Specifies the value of the primary destination type.  
|  | For example:  
|  | If the primary destination is **dest_domain**, a value for this field can be yahoo.com  
|  | If the primary destination type is **dest_ip**, the value for this field can be 123.456.78.9.  
|  | If the primary destination is **url_regex**, a value for this field can be politics. |
| **Parent Proxies** | Specifies the IP addresses or hostnames of the parent proxies and the port numbers used for communication.  
|  | Parent proxies are queried in the order specified in the list.  
|  | If the request cannot be handled by the last parent server in the list, it is routed to the origin server. Separate each entry with a semicolon; for example: **parent1:8080**; **parent2:8080** |
| **Round Robin** | Select **true** for the proxy to go through the parent cache list in a round-robin based on client IP address.  
|  | Select **strict** for the proxy to serve requests strictly in turn.  
|  | For example, machine proxy1 serves the first request, proxy2 serves the second request, and so on.  
|  | Select **false** if you do not want round-robin selection to occur. |
| **Go direct** | Select **true** for requests to bypass parent hierarchies and go directly to the origin server.  
|  | Select **false** if you do not want requests to bypass parent hierarchies. |
| **Secondary Specifiers: Time** | Specifies a time range, using a 24-hour clock, such as 08:00-14:00. If the range crosses midnight, enter this as two comma-separated ranges. For example, if a range extends from 6:00 in the evening until 8:00 in the morning, enter the following:  
|  | 18:00 - 23:59, 0:00 - 8:00 |
| **Secondary Specifiers: Prefix** | Specifies a prefix in the path part of a URL. |
| **Secondary Specifiers: Suffix** | Specifies a file suffix in the URL, such as .htm or .gif. |
| **Secondary Specifiers: Source IP** | Specifies the IP address or range of IP addresses of the clients. |
| **Secondary Specifiers: Port** | Specifies the port in a requested URL. |
### Mapping and Redirection

`Configure > Content Routing > Mapping and Redirection`

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Serve Mapped Hosts Only</strong></td>
<td>Select <strong>Required</strong> if you want the proxy to serve requests only to origin servers listed in the mapping rules of the <code>remap.config</code> file. If a request does not match a rule in the <code>remap.config</code> file, the browser receives an error. This option provides added security for your Content Gateway system.</td>
</tr>
<tr>
<td><strong>Retain Client Host Header</strong></td>
<td>When this option is enabled, Content Gateway retains the client host header in a request (it does not include the client host header in the mapping translation).</td>
</tr>
</tbody>
</table>
| **Redirect No-Host Header to URL** | Specifies the alternate URL to which to direct incoming requests from older clients that do not provide a `Host:` header.  
It is recommended that you set this option to a page that explains the situation to the user and advises a browser upgrade or provides a link directly to the origin server, bypassing the proxy. Alternatively, you can specify a map rule that maps requests without `Host:` headers to a particular server. |
| **URL Remapping Rules**          | Displays a table listing the mapping rules in the `remap.config` file so that you can redirect HTTP requests permanently or temporarily without the proxy having to contact any origin servers.  
**Note:** Mapping a URL to another URL in the same domain requires that a “/” be specified in **From Path Prefix** field. See the example following this table. |
| **Refresh**                      | Updates the table to display the most up-to-date rules in the `remap.config` file.                                                                 |
| **Edit File**                    | Opens the configuration file editor so that you can edit and add rules to the `remap.config` file.                                            |
### remap.config Configuration File Editor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rule display box</strong></td>
<td>Lists the <code>remap.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</td>
</tr>
<tr>
<td><strong>Add</strong></td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
</tbody>
</table>
| **Rule Type**            | Lists the type of rules you can add to the remap.config file:  
**map** provides the same function as redirect. Use of redirect is recommended.  
**redirect** redirects HTTP requests permanently without having to contact the origin server. Permanent redirects notify the browser of the URL change (by returning an HTTP status code 301) so that the browser can update bookmarks.  
**redirect_temporary** redirects HTTP requests temporarily without having to contact the origin server. Temporary redirects notify the browser of the URL change for the current request only (by returning an HTTP status code 307).  
**reverse_map** is not supported. |
| **From Scheme**          | Specifies the protocol of the mapping rule. `rtsp` and `mms` are not supported.  
**Note:** Mapping a URL of one protocol (scheme) to a different protocol (scheme) is not supported. |
| **From Host**            | Specifies the hostname of the URL to map from.                                                                                                                                                         |
| **From Port (Optional)** | Specifies the port number in the URL to map from.                                                                                                                                                      |
| **From Path Prefix (Optional)** | Specifies the path prefix of the URL to map from. Sometimes it is desirable to redirect a URL to a sub-page in the same domain. For example, to redirect “www.cnn.com” to “www.cnn.com/tech”. To make this rule work you must specify “/” in the From Path Prefix field. If it is not specified, the redirection results in a URL that recursively adds the page specifier to the URL. For example, “www.example.com/tech” becomes “www.example.com/tech/tech/tech/tech/tech/tech/tech/tech/tech/tech/tech/tech/tech/tech/...” |
| **From Query (Optional)** | Specifies the query of the URL to map from.                                                                                                                                                           |
| **To Scheme**            | Must match **From Scheme**.                                                                                                                                                                             |
| **To Host**              | Specifies the hostname of the URL to map to.                                                                                                                                                          |
| **To Port (Optional)**   | Specifies the port number of the URL to map to.                                                                                                                                                       |
| **To Path Prefix (Optional)** | Specifies the path prefix of the URL to map to.                                                                                                                                                     |
**To Query (Optional)** | Specifies the query of the URL to map to.  
---|---  
{undefined} | Specifies the media protocol type of the mapping rule. Not supported.

---

### Browser Auto-Config

**Configure > Content Routing > Browser Auto-Config > PAC**

- **Auto-Configuration Port**: Specifies the port Content Gateway uses to download the auto-configuration file to browsers. The port cannot be assigned to any other process. The default port is 8083. If you change this option, you must restart Content Gateway.

- **PAC Settings**: Lets you edit the PAC file (`proxy.pac`). See *Using a PAC file*, page 40.

---

**Configure > Content Routing > Browser Auto-Config > WPAD**

- **WPAD Settings**: Lets you edit the `wpad.dat` file. See *Using WPAD*, page 42.

---

### Security

**Help | Content Gateway | Version 8.1.x**

The Security configuration options are divided into the following categories:

- *Connection Control*, page 335
- *FIPS Security*, page 335
- *Web DLP*, page 336
- *Access Control*, page 337
- *SOCKS*, page 353
Connection Control

Configure > Security > Connection Control

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proxy Access</td>
<td></td>
</tr>
<tr>
<td>Access Control</td>
<td>Displays the rules in the <code>ip_allow.config</code> file that control which clients can access Content Gateway. By default, all remote hosts are allowed to access the proxy.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date rules in the <code>ip_allow.config</code> file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor for the <code>ip_allow.config</code> file.</td>
</tr>
</tbody>
</table>

`ip_allow.config` Configuration File Editor

<table>
<thead>
<tr>
<th>rule display box</th>
<th>Lists the <code>ip_allow.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
</tbody>
</table>

IP Action

Lists the type of rules you can add.

- An `ip_allow` rule allows the clients listed in the Source IP field to access the proxy.
- An `ip_deny` rule denies the clients listed in the Source IP field access to the proxy.

<table>
<thead>
<tr>
<th>Source IP</th>
<th>Specifies the IP address or range of IP addresses of the clients.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>Applies the configuration changes.</td>
</tr>
<tr>
<td>Close</td>
<td>Exits the configuration file editor. Click <strong>Apply</strong> before you click <strong>Close</strong>; otherwise, all configuration changes will be lost.</td>
</tr>
</tbody>
</table>

FIPS Security

Configure > Security > FIPS

When FIPS mode is enabled:

- HTTPS connections use only TLSv1 or higher
Configuration Options

- HTTPS connections use FIPS 140-2 approved algorithms
- Content Gateway generates SHA-256 certificates in response to origin server certificate requests

**Warning**

Once enabled, FIPS 140-2 mode cannot be disabled without reinstalling Content Gateway. If Content Gateway is on an appliance, the appliance must be reimaged.

**Important**

Due to a system limitation, FIPS 140-2 mode cannot be used with NTLM user authentication (IWA fallback to NTLM or Legacy NTLM).

For complete information, see *FIPS 140-2 Mode, page 181*.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIPS Enable/Disable</td>
<td>By default, Content Gateway is installed in non-FIPS 140-2 mode. To switch</td>
</tr>
<tr>
<td>radio buttons</td>
<td>to FIPS 140-2 mode, select the Enabled radio button, click <strong>Apply</strong>, and</td>
</tr>
<tr>
<td></td>
<td>restart Content Gateway. <strong>Warning:</strong> Once enabled, FIPS 140-2 mode cannot</td>
</tr>
<tr>
<td></td>
<td>be disabled without reinstalling Content Gateway. For Websense appliance</td>
</tr>
<tr>
<td></td>
<td>installations, reinstallation requires reimaging the system.</td>
</tr>
</tbody>
</table>

**Web DLP**

For complete information, see *Web DLP Configuration Options, page 181*.

**Note**

The Web DLP configuration options appear on the Configure menu only if you have enabled **Web DLP** on the **Configure > My Proxy > Basic > General** tab and selected **Integrated on-box** in the **Features** table.
Configure > Security > Web DLP

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRITON Management server IP address</td>
<td>Specifies the IP address of the TRITON management server. Configure Web DLP policy in the DATA module of TRITON Manager.</td>
</tr>
<tr>
<td>Analyze HTTPS Content</td>
<td>Specifies whether decrypted traffic should be sent to TRITON AP-DATA for analysis, or sent directly to the destination.</td>
</tr>
<tr>
<td>Analyze FTP Uploads</td>
<td>Specifies whether to send FTP upload requests to TRITON AP-DATA for analysis. The FTP proxy feature must be enabled. See <em>FTP</em>, page 328.</td>
</tr>
</tbody>
</table>

Registration screen fields:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRITON Management server IP</td>
<td>Specifies the IP address of the TRITON Management server. This is where data security policy configuration and management is performed.</td>
</tr>
<tr>
<td>Administrator user name</td>
<td>Specifies the account name of a TRITON AP-DATA administrator. The administrator must have Deploy Settings privileges.</td>
</tr>
<tr>
<td>Administrator password</td>
<td>Specifies the password of the TRITON AP-DATA administrator.</td>
</tr>
<tr>
<td>Register button</td>
<td>Initiate the registration action. This button is enabled only after data is entered in all of the fields.</td>
</tr>
</tbody>
</table>

Access Control

Use the **Access Control** tabs to:

- Create custom filtering rules
- Configure proxy user authentication

The **Filtering** tab is always available on the **Access Control** page.

Other tabs are dynamic based on the authentication method selected in the **Authentication** section of **Configure > My Proxy > Basic**.

If an authentication method is enabled, the **Global Configuration Options** tab is always displayed.

If **Integrated Windows Authentication** is selected, these tabs display:

- **Integrated Windows Authentication**
- **Global Configuration Options**
If **LDAP** is selected, these tabs display:

- **LDAP**
- **Global Configuration Options**

If **Radius** is selected, these tabs display:

- **Radius**
- **Global Configuration Options**

If **NTLM** is selected, these tabs display:

- **NTLM**
- **Global Configuration Options**

If **Rule-Based Authentication** is selected, these tabs display:

- **Domains**
- **Authentication Rules**
- **Global Configuration Options**

The tables below describe the purpose of each field on each tab. Use your browser’s Search feature to find the field that you’re looking for.

For a complete description of Content Gateway user authentication features, see "Content Gateway user authentication", page 191.

**Configure > Security > Access Control > Filtering**

Filtering rules can be used to:

- Deny or allow URL requests
- Insert custom headers
- Allow specified applications, or requests to specified websites to bypass user authentication
- Keep or strip header information from client requests
- Prevent specified applications from transiting the proxy

Rules are ordered checked prior to user authentication (if configured). Rules are applied based on first match in a top-down traversal of the list. If no rule matches, the request is allowed to proceed.

Rules are stored in `filter.config`.

After adding, deleting, or modifying a rule, restart Content Gateway.
For complete information about filtering rules, see *Filtering Rules, page 183.*

<table>
<thead>
<tr>
<th>Filtering</th>
<th>Displays an ordered list of filtering rules. Three filtering rules are configured by default. The first denies traffic on port 25 to all destinations. The second and third bypass user authentication for connections to 2 file sandbox destinations.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date rules in the <code>filter.config</code> file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor for the <code>filter.config</code> file.</td>
</tr>
</tbody>
</table>

**filter.config Configuration File Editor**

<table>
<thead>
<tr>
<th>rule display box</th>
<th>Lists the rules currently stored in <code>filter.config</code>. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page. Click Add after selecting or entering values for the rule.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
</tbody>
</table>

**Rule Type**

| Rule Type | Specifies the rule type: Select *allow* to allow particular URL requests to bypass authentication. Select *deny* to deny requests for objects from specific destinations. When a request is denied, the client receives an access denied message. Select *keep_hdr* to specify which client request header information you want to keep. Select *strip_hdr* to specify which client request header information you want to strip. Select *add_hdr* to cause a custom header to be added to the request. This rule type requires that values be defined for *Custom Header* and *Header Value*. Add custom headers to satisfy specific requirements of a destination domain. See *Filtering Rules, page 183*. The *radius* rule type is not supported. |

**Primary Destination Type**

| Primary Destination Type | Lists the primary destination types: *dest_domain* is a requested domain name. *dest_host* is a requested host name. *dest_ip* is a requested IP address. *url_regex* is a regular expression to be found in a URL. |

**Primary Destination Value**

<p>| Primary Destination Value | Specifies the value of the Primary Destination Type. For example, if the Primary Destination Type is <em>dest_ip</em>, the value for this field might be 123.456.78.9. |</p>
<table>
<thead>
<tr>
<th>Additional Specifiers:</th>
<th>Specifies the client request header information that you want to keep or strip. This option applies to only <code>keep_hdr</code> or <code>strip_hdr</code> rule types.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header Type</td>
<td></td>
</tr>
<tr>
<td>Additional Specifiers:</td>
<td>Not supported.</td>
</tr>
<tr>
<td>Realm (optional)</td>
<td>Specifies the proxy port to match for this rule.</td>
</tr>
<tr>
<td>Proxy Port (optional)</td>
<td>For use when the rule type is <code>add_hdr</code>. Specifies the custom header name that the destination domain expects to find in the request.</td>
</tr>
<tr>
<td>Custom Header</td>
<td>For use when the rule type is <code>add_hdr</code>. Specifies the custom header value that the destination domain expects to be paired with the custom header.</td>
</tr>
<tr>
<td>Header Value (optional)</td>
<td>Specifies a time range, such as 08:00-14:00.</td>
</tr>
<tr>
<td>Time</td>
<td>Specifies a prefix in the path part of a URL.</td>
</tr>
<tr>
<td>Prefix</td>
<td>Specifies a file suffix in the URL.</td>
</tr>
<tr>
<td>Suffix</td>
<td>Specifies the IP address of the client.</td>
</tr>
<tr>
<td>Source IP</td>
<td>Specifies the port in a requested URL.</td>
</tr>
<tr>
<td>Port</td>
<td>Specifies a request URL method: <code>get</code>, <code>post</code>, <code>put</code>, <code>trace</code>.</td>
</tr>
<tr>
<td>Method</td>
<td>Specifies the protocol of a requested URL. Options are: <code>HTTP</code>, <code>HTTPS</code>, <code>FTP</code>. (<code>rtsp</code> and <code>mms</code> are not supported).</td>
</tr>
<tr>
<td>Scheme</td>
<td>Specifies the Request header User-Agent value. Use this field to create application filtering rules that:</td>
</tr>
<tr>
<td>User-Agent</td>
<td>• Allow applications that don’t properly handle authentication challenges to bypass authentication</td>
</tr>
<tr>
<td></td>
<td>• Block specified client-based applications from accessing the Internet</td>
</tr>
<tr>
<td>Apply</td>
<td>Applies the configuration changes.</td>
</tr>
<tr>
<td>Close</td>
<td>Exits the configuration file editor. Click <strong>Apply</strong> before you click <strong>Close</strong>; otherwise, all configuration changes will be lost.</td>
</tr>
</tbody>
</table>

**Configuration Options**
Configure > Security > Access Control > Global Configuration Options

Use this page to specify global options for:

- The fail open/fail closed action to take when user authentication fails
- Credential caching
- For transparent proxy, an alternate hostname for the proxy that all clients on the network can resolve. Required.
For more information, see *Global authentication options, page 194.*

### Note

The user interface setting to disable the NTLM cache for explicit proxy has been removed. Although not recommended, the cache can be disabled for explicit proxy traffic in records.config by setting the value of `proxy.config.ntlm.cache.enabled` to 0 (zero).

<table>
<thead>
<tr>
<th>Global Configuration Options</th>
<th>Disabled – Prevents requests from proceeding to the Internet when an authentication failure occurs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail Open</td>
<td>Enabled only for critical service failures (default) – Allows requests to proceed if authentication fails because there is no response from the domain controller or because the client is sending badly formatted messages.</td>
</tr>
<tr>
<td></td>
<td>Enabled for all authentication failures – Allows requests to proceed for all authentication failures, including password failures.</td>
</tr>
<tr>
<td></td>
<td>When a fail open setting is enabled, if a TRITON AP-WEB XID agent is configured an attempt is made to identify the requester and apply user-based policy. Otherwise, if a policy has been assigned to the client’s IP address, that policy is applied. Otherwise, the Default policy is applied.</td>
</tr>
<tr>
<td></td>
<td><strong>Important:</strong> When user authentication is rule-based with a domain list:</td>
</tr>
<tr>
<td></td>
<td>• If Enabled only for critical service failures is selected, when a critical service failure occurs fail open is not applied. An error always results in fail closed.</td>
</tr>
<tr>
<td></td>
<td>• If Enabled for all authentication failures, including incorrect password is selected, after trying basic credentials with every domain in the list, fail open is applied.</td>
</tr>
<tr>
<td></td>
<td><strong>Important:</strong> The Fail Open setting does not apply when IWA is the authentication method and the client fails to retrieve a kerberos ticket from the domain controller (DC) because the DC is down. The Fail Open setting does apply with IWA when IWA falls back to NTLM and authentication fails.</td>
</tr>
</tbody>
</table>
| Credential Caching: Caching Method | **Cache using IP address only** – specifies that all credentials are cached with IP address surrogates. This is the recommended method when all clients have unique IP addresses.  
**Cache using Cookies only** – specifies that all credentials are cached with cookie surrogates. This is recommended when all clients share IP addresses, as with multi-host servers such as Citrix servers, or when traffic is NATed by a device that is forwarding traffic to Content Gateway.  
**Cache using both IP addresses and Cookies** – specifies to use cookie surrogates for the IP addresses listed in the cookie caching list, and to use IP address surrogates for all other IP addresses. This is recommended when the network has a mix of clients, some with unique IP addresses and some using multi-user hosts or that are subject to NATing. 

The cookie caching list is a comma separated list that can contain up to:  
- 64 IPv4 addresses  
- 32 IPv4 address ranges  
- 24 IPv6 addresses  
- 12 IPv6 address ranges  

For a description of surrogate credentials, see *Surrogate credentials*. |
| Credential Caching: Time-To-Live | Specifies the duration, in minutes, that an entry in the cache is retained. When the TTL expires, the entry is removed and the next time that that user submits a request, the user is authenticated. If the authentication succeeds, an entry is placed in the cache. |
Websense Content Gateway

Configure > Security > Access Control > IWA

The Integrated Windows Authentication (IWA) page appears only if you have enabled IWA in the Features table on the Configure > My Proxy > Basic > General tab.

Use this page to join or unjoin the Windows domain. When a domain has been joined, the page provides a summary of the domain attributes and an Unjoin button.

For a complete description, see Integrated Windows Authentication, page 199.

<table>
<thead>
<tr>
<th>Configuration Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purge LDAP cache on authentication failure</td>
<td>Specifies that when an LDAP user authentication failure occurs, Content Gateway will delete the authorization record for that client from the LDAP cache.</td>
</tr>
<tr>
<td>Redirect Hostname</td>
<td>For transparent proxy, specifies an alternate hostname for the proxy that all clients on the network can resolve. Required. Valid characters for Redirect HostName are: A-Z, a-z,0-9 and -. _ ~ [ ] ! $ &amp; ' ( ) * + , ; = For complete information see Redirect Hostname, page 198.</td>
</tr>
</tbody>
</table>

Integrated Windows Authentication

<table>
<thead>
<tr>
<th>Domain Name</th>
<th>Specifies the fully qualified Windows domain name.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrator Name</td>
<td>Specifies the Windows Administrator user name.</td>
</tr>
<tr>
<td>Administrator Password</td>
<td>Specifies the Windows Administrator password. Note: The name and password are used only during the join and are not stored.</td>
</tr>
<tr>
<td>Domain Controller</td>
<td>Specifies how to locate the domain controller: • Auto-detect using DNS • DC name or IP address If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list.</td>
</tr>
<tr>
<td>Content Gateway Hostname</td>
<td>Specifies the Content Gateway hostname. Because IWA uses the hostname as a NetBIOS name when registering with Kerberos, the hostname cannot exceed 15 characters in length (a NetBIOS restriction), or 11 characters on V-Series appliances (V-Series adds 4 characters to the hostname to ensure that the hostname is unique across modules (Doms). IMPORTANT: Once the domain is joined the hostname cannot be changed. If it is, IWA will immediately stop working until the domain is unjoined and then rejoined with the new hostname.</td>
</tr>
<tr>
<td>Join Domain</td>
<td>Click Join Domain to join the domain.</td>
</tr>
</tbody>
</table>

Note: Purge LDAP cache on authentication failure and Redirect Hostname are required configuration options.
Configure > Security > Access Control > LDAP

The LDAP configuration options appear on the Configure pane only if you have enabled LDAP in the Features table on the Configure > My Proxy > Basic > General tab.

For more information on configuring LDAP see LDAP authentication, page 207.

<table>
<thead>
<tr>
<th>LDAP</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDAP Server: Hostname</td>
<td>Specifies the hostname of the LDAP server. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>LDAP Server: Port</td>
<td>Specifies the port used for LDAP communication. The default port number is 389. To use the default Global Catalog server port, specify port 3268.</td>
</tr>
<tr>
<td>LDAP Server: Secure LDAP</td>
<td>Specifies whether Content Gateway will use secure communication with the LDAP server. If enabled, set the LDAP Port field (above) to 636 or 3269 (the secure LDAP ports).</td>
</tr>
<tr>
<td>LDAP Server: Server Type</td>
<td>Specifies the search filter. Select either Microsoft Active Directory or other directory services.</td>
</tr>
<tr>
<td>LDAP Server: Bind Distinguished Name</td>
<td>Specifies the Full Distinguished Name (fully qualified name) of a user in the LDAP-based directory service. For example: CN=John Smith,CN=USERS,DC=MYCOMPANY, DC=com</td>
</tr>
<tr>
<td>LDAP Server: Password</td>
<td>Specifies a password for the user identified in the Bind_DN field.</td>
</tr>
<tr>
<td>LDAP Server: Base Distinguished Name</td>
<td>Specifies the base Distinguished Name (DN). You can obtain this value from your LDAP administrator. You must specify a correct base DN; otherwise LDAP authentication will fail to operate.</td>
</tr>
</tbody>
</table>

Configure > Security > Access Control > Radius

The Radius configuration options appear on the Configure pane only if you have enabled Radius in the Features table on the Configure > My Proxy > Basic > General tab.
For more information on configuring Radius, see *RADIUS authentication*, page 210.

### Radius

<table>
<thead>
<tr>
<th>Primary Radius Server: Hostname</th>
<th>Specifies the hostname or IP address of the primary RADIUS authentication server. If you change this option, you must restart Content Gateway.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Radius Server: Port</td>
<td>Specifies the port that Content Gateway uses to communicate with the primary RADIUS authentication server. The default port is 1812. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Primary Radius Server: Shared Key</td>
<td>Specifies the key to use for encoding. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Secondary Radius Server (optional): Hostname</td>
<td>Specifies the hostname or IP address of the secondary RADIUS authentication server. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Secondary Radius Server (optional): Port</td>
<td>Specifies the port that Content Gateway uses to communicate with the secondary RADIUS authentication server. The default port is 1812. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Secondary Radius Server (optional): Shared Key</td>
<td>Specifies the key to use for encoding. If you change this option, you must restart Content Gateway.</td>
</tr>
</tbody>
</table>

### Configure > Security > Access Control > NTLM

The NTLM configuration options appear on the Configure pane only if you have enabled NTLM in the Features table on the Configure > My Proxy > Basic > General tab.
For more information on configuring NTLM, see *Legacy NTLM authentication*, page 204.

### NTLM

<table>
<thead>
<tr>
<th>Configuration Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Controller Hostnames</td>
<td>Specifies the hostnames of the domain controllers in a comma separated list. The format is: host_name[:port][%netbios_name] or IP_address[:port][%netbios_name]. If you are using Active Directory 2008, you must include the netbios_name or use SMB port 445. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Load Balancing</td>
<td>Enables or disables load balancing. When enabled, Content Gateway balances the load when sending authentication requests to the domain controllers. <strong>Note:</strong> When multiple domain controllers are specified, even if load balancing is disabled, when the load on the primary domain controller reaches the maximum number of connections allowed, new requests are sent to a secondary domain controller as a short-term failover provision, until such time that the primary domain controller can accept new connections. If you change this option, you must restart Content Gateway.</td>
</tr>
</tbody>
</table>

**Configure > Security > Access Control > Domains**

The Domains tab appears in the Access Control list only if you have enabled Rule-Based Authentication in the Features table on Configure > My Proxy > Basic > General.

Use this tab to create and maintain a list of domains that can be specified in authentication rules. Use the Authentication Rules tab to define authentication rules. Be sure to set the *Global authentication options*, page 194.
**Important**

You must configure the Domains list before you configure authentication rules.

If you have never configured rule-based authentication, see *Rule-Based Authentication, page 213*, for complete information.

---

### Domains

<table>
<thead>
<tr>
<th>Domain List</th>
<th>An unordered list of domains that have been identified for use in authentication rules. Use the <strong>Edit</strong> button to change some attributes associated with the domain. Use the <strong>Delete</strong> or <strong>Unjoin</strong> button to remove a domain from the list. The domain list is stored in auth_domains.config.</th>
</tr>
</thead>
</table>

**Domain list: New Domain button**

Use the **New Domain** button to add a domain to the Domains list. The screen is expanded to allow for specification of the domain.

**New Domain action**

**Domain Details: Domain Identifier**

Specify a unique name for the domain. The name is used only by Content Gateway; it does not change any attribute of the actual domain or directory.

**Important:** You cannot change the domain identifier after it has been added to the list. To change the name, delete the entry from the list and re-add it with the new name.

**Domain Details: Authentication Method**

Specify the authentication method: IWA, Legacy NTLM, or LDAP. Radius is not supported. When you select an authentication method, configuration options specific to that method are added to the page.

**Important:** You cannot change the authentication method after you add the domain to the list. To change the authentication method, delete the entry from the list and re-add the domain specifying the new authentication method.

**Domain Details: Aliasing**

Specify an alias to send to the filtering service for all users who match this rule (optional). The alias must be static. It can be empty (blank). The alias must exist in the primary domain controller (the DC visible to the filtering service). See *Unknown users and the ‘alias’ option*, page 217.

**IWA Domain Details**

These options are presented when IWA is specified as the authentication method.
<table>
<thead>
<tr>
<th><strong>Domain Name</strong></th>
<th>Specify the fully qualified domain name. For example: corp-domain.example.com</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Administrator Name</strong></td>
<td>Specify a Windows Active Directory domain administrator user name.</td>
</tr>
</tbody>
</table>
| **Administrator Password** | Specify the corresponding domain administrator password.  
  **Note:** The name and password are used only during the join and are not stored. |
| **Domain Controller** | Specify how to locate the domain controller:  
  - Auto-detect using DNS  
  - DC name or IP address  
  If the domain controller is specified by name or IP address, you can also specify backup domain controllers in a comma separated list. |
| **Content Gateway Hostname** | Specify the Content Gateway hostname.  
  Because IWA uses the hostname as a NetBIOS name when registering with Kerberos, the hostname cannot exceed 15 characters in length (a NetBIOS restriction), or 11 characters on V-Series appliances (V-Series adds 4 characters to the hostname to ensure that the hostname is unique across modules (Doms).  
  **Warning:** Once the domain is joined the hostname cannot be changed. If it is, IWA will immediately stop working until the domain is unjoined and then rejoined with the new hostname. |
| **Join Domain** | Click Join Domain to join the domain. |
| **Legacy NTLM Domain Details** |  
  **Domain Controller** | Specify the IP address and port number of the primary domain controller (if no port is specified, Content Gateway uses port 139), followed by a comma separated list of secondary domain controllers to be used for load balancing and failover. |
| **Load Balance** | Select the check box to balance the load across multiple NTLM DCs.  
  **Note:** When multiple domain controllers are specified, even if load balancing is disabled, when the load on the primary domain controller reaches the maximum number of connections allowed, new requests are sent to a secondary domain controller as a short-term failover provision, until such time that the primary domain controller can accept new connections. |
| **LDAP Domain Details** |  
  **LDAP Server Name** | Specify the LDAP server name. |
| **LDAP Server Port** | Specify the LDAP Server Port (optional)  
  The default is 389. |
| **LDAP Base Distinguished Name** | Specify the LDAP Base Distinguished Name. |
Configure > Security > Access Control > Authentication Rules

The Authentication Rules tab appears in the Access Control list only if you have enabled Rule-Based Authentication in the Features table on the Configure > My Proxy > Basic > General tab.

Use this tab to create and maintain authentication rules. Use the Domains tab to build and maintain a list of domains that can be used in authentication rules. You must configure the Domains list before you define authentication rules.

Be sure to set the Global authentication options, page 194.

### Important

If you have never configured rule-based authentication, see Rule-Based Authentication, page 213, for complete information.

<table>
<thead>
<tr>
<th>Authentication Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication Rule List</td>
</tr>
<tr>
<td>Refresh</td>
</tr>
<tr>
<td>Edit File</td>
</tr>
</tbody>
</table>
### auth_rules.config Configuration File Editor

<table>
<thead>
<tr>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rule display box</strong></td>
<td>Lists, in order, the current rule set. When user authentication is performed, the list is traversed, top-down and the first match is applied. Select a rule to edit it. The arrows to the left of the box allow you to move the selected rule up or down in the list. The “X” button deletes the selected rule. Rules cannot be more than 512 characters.</td>
</tr>
<tr>
<td><strong>Add</strong></td>
<td>Adds a new rule.</td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>Updates the selected rule with the current values.</td>
</tr>
<tr>
<td><strong>Status</strong></td>
<td>Specifies whether the rule is enabled (active) or disabled after the rule is saved and Content Gateway is restarted. You can create a rule and not enable it until other elements of your network are ready to support it.</td>
</tr>
<tr>
<td><strong>Rule Name</strong></td>
<td>Specifies a unique, descriptive name for the rule. It is recommended that the name not exceed 50 characters.</td>
</tr>
<tr>
<td><strong>Source IP</strong></td>
<td>Specifies IP addresses or IP address ranges for this rule (must be entered without any spaces). Example: 10.1.1.1 or 0.0.0.0-255.255.255.255 or 10.1.1.1,20.2.2.2,3.0.0.0-3.255.255.255 The comma separated list can contain up to: 64 IPv4 addresses 32 IPv4 address ranges 24 IPv6 addresses 12 IPv6 address ranges</td>
</tr>
<tr>
<td><strong>Proxy Port</strong></td>
<td>Specifies the inbound port for traffic when Content Gateway is deployed as an explicit proxy. If undefined, all ports match, as configured on Configure &gt; Protocols &gt; HTTP &gt; General. Transparent proxy deployment should leave this field undefined.</td>
</tr>
<tr>
<td><strong>User-Agent</strong></td>
<td>Specifies 1 or more regular expressions used to match text in the User-Agent string, for example to match common browsers. Regexes must be POSIX-compliant. The “^” operator is not supported. When the field is empty, all User-Agent values match. You can edit the field directly. To insert a predefined regex for a common browser, select it from the drop down list and click Add. Multiple regexes can be specified. Use the “</td>
</tr>
</tbody>
</table>
| Auth Sequence | Specifies 1 or more domains to use for authentication. Select a domain from the Domains drop down list (populated from the Domains List), and click Include to add it to the list. If you add more than one domain, you can set the order by selecting an entry and using the up and down arrows. You can delete a selected domain with the “X” button. **Best practice:** If you know what domain a set of users belongs to, create a rule just for that group. **Best practice:** Place the rule with the largest number of users authenticating with known domain membership at the top of the list. These are the fastest authentications. **Best practice:** If you don’t know what domain a set of users belongs to, specify the fewest number of domains needed to authenticate the users in the set. **Best practice:** It is always better to create targeted rules because attempting to authenticate against a large set of domains can introduce noticeable latency. **Important:** When user authentication is rule-based with a domain list:
- For each user, the first successful authentication is cached and used in subsequent authentications. If IP address caching is configured, an IP address surrogate is cached. If Cookie Mode is configured, a cookie surrogate is cached.

<table>
<thead>
<tr>
<th>Captive Portal</th>
<th>Click <a href="#">Enabled for HTTPS/HTTP Authentication page</a> to redirect users to a customizable web portal page for authentication. See <a href="#">Authentication using Captive Portal</a> for details.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply</td>
<td>Applies the configuration changes. <strong>Important:</strong> If the rule specifies a regex for User-Agent, the regex is validated when Apply is clicked. If the regex is not valid, the rule is deleted and must be recreated.</td>
</tr>
<tr>
<td>Close</td>
<td>Exits the configuration file editor. Click Apply before you click Close; otherwise, all configuration changes will be lost.</td>
</tr>
</tbody>
</table>
SOCKS

For more information about Content Gateway support for SOCKS, see Configuring SOCKS firewall integration, page 187.

Note
The SOCKS configuration options appear on the Configure pane only if you have enabled SOCKS in the Features table on the Configure > My Proxy > Basic > General tab.

Configure > Security > Access Control > SOCKS > General

| SOCKS Version | Specifies the version of SOCKS used on your SOCKS server. Content Gateway supports SOCKS version 4 and version 5. If you change this option, you must restart Content Gateway. |

Configure > Security > Access Control > SOCKS > Proxy

| SOCKS Proxy | Enables or disables the SOCKS Proxy option. As a SOCKS proxy, Content Gateway can receive SOCKS packets (usually on port 1080) from the client, and forward requests directly to the SOCKS server. For more information about the SOCKS Proxy option, see Configuring SOCKS firewall integration, page 187. If you change this option, you must restart Content Gateway. |

| SOCKS Proxy Port | Specifies the port on which Content Gateway accepts SOCKS traffic. This is usually port 1080. If you change this option, you must restart Content Gateway. |
## Configure > Security > Access Control > SOCKS > Server

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>On-Appliance SOCKS server</strong></td>
<td>Displays only when Content Gateway is on a Websense appliance. Enables or disables the on-appliance SOCKS server. The SOCKS proxy option must be enabled to route client requests through the SOCKS server. You can configure Content Gateway to use other SOCKS servers in your network by editing <code>socks_server.config</code>. See the next entry.</td>
</tr>
<tr>
<td><strong>Socks Servers table</strong></td>
<td>Displays a table of configured SOCKS servers. For information about adding and configuring SOCKS servers, see <em>Configuring SOCKS servers</em>, page 188.</td>
</tr>
<tr>
<td><strong>Refresh</strong></td>
<td>Updates the table to display the current entries in <code>socks_server.config</code>.</td>
</tr>
<tr>
<td><strong>Edit File</strong></td>
<td>Opens the configuration file editor for <code>socks_server.config</code>.</td>
</tr>
<tr>
<td><strong>socks_server.config Configuration File Editor</strong></td>
<td><strong>entry display box</strong> Lists the SOCKS servers that have been configured for use with Content Gateway. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected entry up or down in the list.</td>
</tr>
<tr>
<td><strong>Add</strong></td>
<td>Adds an entry to the server list.</td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>Updates the selected entry. Select a server from the list; modify the settings; click <strong>Set</strong> to update the entry.</td>
</tr>
<tr>
<td><strong>Clear Fields</strong></td>
<td>Clears all fields for the selected server.</td>
</tr>
<tr>
<td><strong>SOCKS Server Name</strong></td>
<td>Specify a name that helps distinguish this SOCKS server from other SOCKS servers.</td>
</tr>
<tr>
<td><strong>SOCKS Server Host</strong></td>
<td>Specify the SOCKS server IP address, or a hostname that is resolvable by your internal DNS service.</td>
</tr>
<tr>
<td><strong>SOCKS Port</strong></td>
<td>Specify the port on which the SOCKS server listens.</td>
</tr>
<tr>
<td><strong>Default SOCKS Server</strong></td>
<td>Select this option to make this SOCKS server the default SOCKS server.</td>
</tr>
<tr>
<td><strong>SOCKS User Name</strong></td>
<td>When SOCKS authentication is used, specify the SOCKS user name with which to authenticate.</td>
</tr>
<tr>
<td><strong>SOCKS Password</strong></td>
<td>When SOCKS authentication is used, specify the password that goes with the specified user.</td>
</tr>
<tr>
<td><strong>Apply</strong></td>
<td>Applies the configuration changes.</td>
</tr>
<tr>
<td><strong>Close</strong></td>
<td>Exits the configuration file editor. Click <strong>Apply</strong> before you click <strong>Close</strong>; otherwise, all configuration changes are lost.</td>
</tr>
</tbody>
</table>
## Socks Server Rules

Displays a table listing the rules in the `socks.config` file that specify the SOCKS servers that Content Gateway must go through to access specific origin servers, and the order in which Content Gateway goes through the SOCKS server list.

You can also specify the origin servers that you want the proxy to access directly, without going through a SOCKS server.

<table>
<thead>
<tr>
<th><strong>Refresh</strong></th>
<th>Updates the table to display the current rules in the <code>socks.config</code> file.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Edit File</strong></td>
<td>Opens the configuration file editor for the <code>socks.config</code> file.</td>
</tr>
</tbody>
</table>

### socks.config Configuration File Editor

<table>
<thead>
<tr>
<th><strong>rule display box</strong></th>
<th>Lists the <code>socks.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Add</strong></td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
</tbody>
</table>

**Rule Type**

Select **Route through SOCKS server** to specify the origin servers that you want the proxy to route through a SOCKS server.

Select **Do not route through SOCKS server** to specify the origin servers that you want the proxy to access directly, bypassing the SOCKS server(s).

**Destination IP**

For **Route through SOCKS server**, specify either a single IP address or a range of IP addresses of origin servers for which Content Gateway must use the SOCKS servers specified in the **SOCKS Servers** field below.

For **Do not route through SOCKS server**, specify the IP addresses of the origin servers that you want the proxy to access directly (without going through the SOCKS server). You can enter a single IP address, a range of IP addresses, or a list of IP addresses. Separate each entry in the list with a comma. Do not specify the all networks broadcast address: 255.255.255.255.

**SOCKS Server**

For a **Route through SOCKS server rule**, select the SOCKS server(s) through which to route requests.

**Round Robin**

Specifies how strictly Content Gateway will follow round robin. You can select **strict**, or **false**.

**Apply**

Applies the configuration changes.

**Close**

Exits the configuration file editor.

Click **Apply** before you click **Close**; otherwise, all configuration changes will be lost.
Configuration Options

Configure > Security > Access Control > SOCKS > Options

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server Connection Timeout</td>
<td>Specifies how many seconds Content Gateway waits attempting to connect to a SOCKS server before timing out.</td>
</tr>
<tr>
<td>Connection Attempts Per Server</td>
<td>Specifies how many times Content Gateway attempts to connect to a given SOCKS server before marking the server as unavailable.</td>
</tr>
<tr>
<td>Server Pool Connection Attempts</td>
<td>Specifies how many times Content Gateway attempts to connect to a given SOCKS server in the pool before giving up.</td>
</tr>
</tbody>
</table>

Subsystems

The Subsystems configuration options are divided into the following categories:

- Cache, page 356
- Logging, page 358
- Networking, page 362

Cache

Configure > Subsystems > Cache > General

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Pinning</td>
<td>Enables or disables the cache pinning option, which lets you keep objects in the cache for a specified time. Set cache pinning rules in the <code>cache.config</code> file.</td>
</tr>
<tr>
<td>Ram Cache Size</td>
<td>Specifies the size of the RAM cache, in bytes. The default size is 104857600 (100 MB). A value of “-1” directs Content Gateway to automatically size the RAM cache to approximately 1 MB per 1 GB of disk cache. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Maximum Object Size</td>
<td>Specifies the maximum size allowed for objects in the cache. A value of 0 (zero) means that there is no size restriction.</td>
</tr>
</tbody>
</table>

Configure > Subsystems > Cache > Partition
### Configure > Subsystems > Cache > Hosting

<table>
<thead>
<tr>
<th>Cache Hosting</th>
<th>Displays a table listing the rules in the hosting.config file that controls which cache partitions are assigned to specific origin servers and domains.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date rules in the hosting.config file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor for the hosting.config file. The configuration file editor page is described below.</td>
</tr>
<tr>
<td>hosting.config Configuration File Editor</td>
<td></td>
</tr>
<tr>
<td>rule display box</td>
<td>Lists the hosting.config file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Primary Destination Type</td>
<td>Specifies the primary destination rule type: Select domain if you want to partition the cache according to domain. Select hostname if you want to partition the cache according to hostname</td>
</tr>
<tr>
<td>Primary Destination Value</td>
<td>Specifies the domain or origin server’s hostname whose content you want to store on a particular partition.</td>
</tr>
<tr>
<td>Partitions</td>
<td>Specifies a comma-separated list of the partitions on which you want to store the content that belongs to the origin server or domain specified.</td>
</tr>
<tr>
<td>Apply</td>
<td>Applies the configuration changes.</td>
</tr>
<tr>
<td>Close</td>
<td>Exits the configuration file editor. Click Apply before you click Close; otherwise, all configuration changes will be lost.</td>
</tr>
</tbody>
</table>
### Logging

**Configure > Subsystems > Logging > General**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logging</td>
<td>Enables or disables event logging so that transactions are recorded into event log files and/or error log files. Select <strong>Log Transactions and Errors</strong> to log transactions into your selected event log files and errors in the error log files. Select <strong>Log Transactions Only</strong> to log transactions into your selected event log files only. Content Gateway does not log errors in the error log files. Select <strong>Log Errors Only</strong> to log errors in the error log files only. Content Gateway does not log transactions into your selected event log files. Select <strong>Disabled</strong> to turn off logging.</td>
</tr>
<tr>
<td>Log Directory</td>
<td>Specifies the path of the directory in which Content Gateway stores event logs. The path of this directory must be the same on every node in the Content Gateway cluster failover group. The default is: /opt/WCG/logs</td>
</tr>
<tr>
<td>Log Space: Limit</td>
<td>Specifies the maximum amount of space (in megabytes) allocated to the logging directory for the log files. When Content Gateway is on a Websense appliance, the size is set to 5120 (5 GB) and cannot be changed. When Content Gateway is installed on a stand-alone server, the default size is 20480 (20 GB) and the size is configurable. <strong>Note:</strong> Transaction logs can consume a lot of space. Make sure that this limit is smaller than the actual space available on the partition that contains the logging directory.</td>
</tr>
<tr>
<td>Log Space: Headroom</td>
<td>Specifies the tolerance for the log space limit. If the <strong>Auto-Delete Rolled Files</strong> option is enabled, autodeletion is triggered when the amount of free space available in the logging directory is less than the headroom.</td>
</tr>
<tr>
<td>Log Rolling: Enable/Disable</td>
<td>Enables or disables log file rolling. To keep log files down to manageable sizes, you can roll them at regular intervals. See <em>Rolling event log files, page 253.</em></td>
</tr>
<tr>
<td>Log Rolling: Offset Hour</td>
<td>Specifies the hour when log rolling takes place. You can set a time of the day in the range 0 to 23. For example, if the offset hour is 0 (midnight) and the roll interval is 6, the log files are rolled at 00:00, 06:00, noon, and 18:00.</td>
</tr>
<tr>
<td>Configuration Options</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td><strong>Log Rolling: Interval</strong></td>
<td>Specifies the amount of time Content Gateway enters data in log files before rolling them to .old files. The minimum value is 300 seconds (five minutes). The default value is 21600 seconds (6 hours). The maximum value is 86400 (1 day).</td>
</tr>
<tr>
<td><strong>Log Rolling: Auto-Delete Rolled Files</strong></td>
<td>Enables autodeletion of rolled log files when available space in the log directory is low. Autodeletion is triggered when the amount of free space available in the log directory is less than the <strong>Log Space Headroom</strong>.</td>
</tr>
<tr>
<td><strong>Reverse DNS lookup for Threat Tracking</strong></td>
<td>Enables or disables reverse DNS lookups to facilitate inclusion of the client host name in the Threats dashboard in the Web module of the TRITON Manager, and in logs and reports. <strong>Caution:</strong> To achieve the expected results and avoid unexpected network behaviors, before enabling this option be sure that reverse DNS is configured in your network.</td>
</tr>
</tbody>
</table>

---

### Configure > Subsystems > Logging > Formats

<table>
<thead>
<tr>
<th>Squid Format: Enable/Disable</th>
<th>Enables or disables the Squid log format.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squid Format: ASCII/ Binary</td>
<td>Select <strong>ASCII</strong> or <strong>Binary</strong> as the type of log files to be created.</td>
</tr>
<tr>
<td>Squid Format: Filename</td>
<td>Specifies the name used for Squid log files. The default filename is <strong>squid.log</strong>.</td>
</tr>
<tr>
<td>Squid Format: Header</td>
<td>Specifies the text header you want Squid log files to contain.</td>
</tr>
<tr>
<td>Netscape Common Format: Enable/Disable</td>
<td>Enables or disables the Netscape Common log format.</td>
</tr>
<tr>
<td>Netscape Common Format: ASCII/ Binary</td>
<td>Select <strong>ASCII</strong> or <strong>Binary</strong> as the type of log file to be created.</td>
</tr>
<tr>
<td>Netscape Common Format: Filename</td>
<td>Specifies the name used for Netscape Common log files. The default filename is <strong>common.log</strong>.</td>
</tr>
<tr>
<td>Netscape Common Format: Header</td>
<td>Specifies the text header you want Netscape Common log files to contain.</td>
</tr>
<tr>
<td>Netscape Extended Format: Enable/Disable</td>
<td>Enables or disables the Netscape Extended log format.</td>
</tr>
<tr>
<td>Netscape Extended Format: ASCII/ Binary</td>
<td>Select <strong>ASCII</strong> or <strong>Binary</strong> as the type of log file to be created.</td>
</tr>
<tr>
<td>Netscape Extended Format: Filename</td>
<td>Specifies the name used for Netscape Extended log files. The default filename is <strong>extended.log</strong>.</td>
</tr>
<tr>
<td>Netscape Extended Format: Header</td>
<td>Specifies the text header you want Netscape Extended log files to contain.</td>
</tr>
<tr>
<td>Netscape Extended 2 Format: Enable/Disable</td>
<td>Enables or disables the Netscape Extended-2 log format.</td>
</tr>
</tbody>
</table>
### Netscape Extended 2 Format: ASCII/Binary
Select **ASCII** or **Binary** as the type of log file to be created.

### Netscape Extended 2 Format: Filename
Specifies the name used for Netscape Extended-2 log files. The default filename is `extended2.log`.

### Netscape Extended 2 Format: Header
Specifies the text header you want Netscape Extended-2 log files to contain.

## Configure > Subsystems > Logging > Splitting

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Split ICP Logs</strong></td>
<td>When enabled, Content Gateway records ICP transactions in a separate log file. When disabled, Content Gateway records ICP transactions in the same log file with HTTP and FTP entries.</td>
</tr>
<tr>
<td><strong>Split Host Logs</strong></td>
<td>When enabled, Content Gateway creates a separate log file for each of the hosts listed in the log_hosts.config file. When disabled, Content Gateway records transactions for all hosts in the same log file.</td>
</tr>
</tbody>
</table>
## Configure > Subsystems > Logging > Collation

<table>
<thead>
<tr>
<th>Configuration Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Collation Mode</strong></td>
<td>Specifies the log collation mode for this Content Gateway node. You can use the log file collation feature to keep all logged information in one place. For more information about log file collation, see <a href="#">Collating event log files</a>, page 258. Select <strong>Collation Disabled</strong> to disable log collation on this Content Gateway node. Select <strong>Be a Collation Server</strong> to configure this Content Gateway node to be the collation server. Select <strong>Be a Collation Client</strong> to configure this Content Gateway server to be a collation client. A Content Gateway server configured as a collation client sends only the active standard log files, such as Squid, Netscape Common, and so on, to the collation server. If you select this option, enter the hostname of the collation server for your cluster in the <strong>Log Collation Server</strong> field. Note: When logs are collated, the source of the log entry—its node of origin—is lost unless you turn on the <strong>Log collation host tagged</strong> option (described below). Log collation consumes cluster bandwidth in sending all log entries to a single node. It can therefore affect the performance of the cluster. If you want Content Gateway as a collation client to send custom (XML-based) log files, you must specify a <strong>LogObject</strong> in the <strong>logs_xml.config</strong> file.</td>
</tr>
<tr>
<td><strong>Log Collation Server</strong></td>
<td>Specifies the hostname of the log collation server to which you want to send log files.</td>
</tr>
<tr>
<td><strong>Log Collation Port</strong></td>
<td>Specifies the port used for communication between the collation server and client. You must specify a port number in all cases, except when log collation is inactive. The default port number is 8085. Note: Do not change the port number unless there is a conflict with another service already using the port.</td>
</tr>
<tr>
<td><strong>Log Collation Secret</strong></td>
<td>Specifies the password for the log collation server and the other nodes in the cluster. This password is used to validate logging data and prevent the exchange of arbitrary information.</td>
</tr>
<tr>
<td><strong>Log Collation Host Tagged</strong></td>
<td>When this option is enabled, Content Gateway adds the hostname of the node that generated the log entry to end of the entry in the collated log file.</td>
</tr>
<tr>
<td><strong>Log Collation Orphan Space</strong></td>
<td>Specifies the maximum amount of space (in megabytes) allocated to the logging directory for storing orphan log files on the Content Gateway node. Content Gateway creates orphan log entries when it cannot contact the log collation server.</td>
</tr>
</tbody>
</table>
The Networking configuration options are divided into the following categories:

- **Connection Management**, page 362
- **ARM**, page 364
- **WCCP**, page 370
- **DNS Proxy**, page 374
- **DNS Resolver**, page 375
- **ICAP**, page 378
- **Virtual IP**, page 379
- **Health Check URLs**, page 380

### Connection Management

The options on the Connection Management pages allow you to tune several important properties of proxy behavior, including connection throttling and load shedding, individual client connection limits and rates, and how to respond to low memory conditions.

By default, Content Gateway accepts 45,000 connections. A connection throttle event occurs when client or origin server connections reach 90% of half the configured limit (20,250 by default). When a connection throttle event occurs, Content Gateway continues processing all existing connections and queues new client connection requests until the connection count falls below the limit.

If you think that Content Gateway is hitting the connection limits, you should monitor the Performance graphs to get an accurate reading of connection activity. In particular, check the **Active Client Connections** and **TCP ESTABLISHED Connections** graphs. You can also check error messages in the system log file, error log file, or event log files.
Configure > Networking > Connection Management > Throttling

Throttling Net Connections | Specifies the maximum number of network connections that Content Gateway accepts. The default value is 45,000. Setting a Content Gateway throttle limit helps to prevent system overload when traffic bottlenecks develop. When network connections reach this limit, Content Gateway queues new connections until existing connections close. Do not set this variable below the minimum value of 100.

Configure > Networking > Connection Management > Load Shedding

Maximum Connections | Specifies the maximum number of client connections allowed before the ARM starts forwarding incoming requests directly to the origin server. The default value is 1 million connections. If you change this option, you must restart Content Gateway.

Configure > Networking > Connection Management > Client Connection Control

Specifies:
- Client concurrent connection limits
- Client connection rate limits
- Proxy response when a limit is exceeded
- A list of clients excepted from the limits

Concurrent Connection Limit: Maximum concurrent connections | Specifies the maximum number of concurrent HTTP/HTTPS connections a client is allowed. The default is 1000. The supported range is: 1 - 45000

Concurrent Connection Limit: Alert when limit exceeded | When enabled, causes Content Gateway to generate an alert when a client exceeds the maximum concurrent connection limit. In addition to displaying the alert in the Content Gateway manager, it is also logged in /var/log/messages and content_gateway.out.

Concurrent Connection Limit: Close excessive connections when limit exceeded | When enabled, causes Content Gateway to close excessive connections when the limit is exceeded.
Configuration Options

### Low Memory Mode

Specifies whether Content Gateway suspends analysis of web traffic when the host system experiences a low-memory condition. In this state, Web module policy enforcement is applied as usual.

<table>
<thead>
<tr>
<th>Low Memory Mode: Enabled/Disabled</th>
<th>Select <strong>Enabled</strong> to suspend content analysis when there is a low memory condition.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Memory Mode Duration</td>
<td>Specifies the length of time, in minutes, that content analysis is suspended.</td>
</tr>
<tr>
<td></td>
<td>If the low memory condition resolves itself before the timer expires, analysis resumes and the low memory mode trigger resets.</td>
</tr>
<tr>
<td></td>
<td>If the timer expires, analysis resumes and the low memory mode trigger is <strong>not</strong> reset.</td>
</tr>
</tbody>
</table>

### Connection Rate Limit

Specifies the maximum connections per second, averaged over a minute, that a client can make. The default is 100. The supported range is: 1 - 1000

<table>
<thead>
<tr>
<th>Connection Rate Limit: Maximum connection rate</th>
<th>Specifies the maximum connections per second, averaged over a minute, that a client can make. The default is 100. The supported range is: 1 - 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection Rate Limit: Alert when limit exceeded</td>
<td>When enabled, causes Content Gateway to generate an alert when a client exceeds the maximum connection rate limit. In addition to displaying the alert in the Content Gateway manager, it is also logged in <code>/var/log/messages</code> and <code>content_gateway.out</code>.</td>
</tr>
<tr>
<td>Connection Rate Limit: Close excessive connections when limit exceeded</td>
<td>When enabled, causes Content Gateway to close excessive connections when the limit is exceeded.</td>
</tr>
</tbody>
</table>
| Exceptions | Specifies IP addresses and/or IP address ranges to which connection limits are **not** applied. IP addresses can be IPv4 or IPv6 (IPv6 support must be enabled). Multiple addresses or ranges can be specified in a comma-separated list that can contain up to:
  - 64 IPv4 addresses
  - 32 IPv4 address ranges
  - 24 IPv6 addresses
  - 12 IPv6 address ranges |

---

**ARM**

The Adaptive Redirection Module (ARM) performs several essential functions including sending device notifications for cluster communication interface failover.
and inspection of incoming packets before the IP layer sees them, readdressing them for Content Gateway processing.

The ARM is always active. For more information, see *The ARM*, page 48.

**Configure > Networking > ARM > General**

<p>| <strong>Network Address Translation (NAT)</strong> | Displays the redirection rules in the <em>ipnat.conf</em> file that specify how incoming packets are readdressed when the proxy is serving traffic transparently. During installation, Content Gateway creates a small number of default rules. These rules can be added to and modified. IPv4 and IPv6 addresses are supported. During operation, Content Gateway traverses the list top down and applies the first matching rule. |
| <strong>Refresh</strong> | Updates the table to display the most up-to-date rules in the <em>ipnat.conf</em> file. |
| <strong>Edit File</strong> | Opens the configuration file editor for the <em>ipnat.conf</em> file. |
| <strong>ipnat.conf Configuration File Editor</strong> | |
| <strong>rule display box</strong> | Lists the <em>ipnat.conf</em> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list. |
| <strong>Add</strong> | Adds a new rule to the rule display box at the top of the configuration file editor page. |
| <strong>Set</strong> | Updates the rule display box at the top of the configuration file editor page. |
| <strong>Ethernet Interface</strong> | Specifies the Ethernet interface that traffic will use to access the Content Gateway machine: for example, <em>eth0</em> on Linux. |
| <strong>Connection Type</strong> | Specifies the connection type that applies for the rule: TCP or UDP. |
| <strong>Destination IP</strong> | Specifies the IP address from which traffic is sent. 0.0.0.0 or :: match all IP addresses. |
| <strong>Destination CIDR</strong> | Specifies the IP address in CIDR (Classless Inter-Domain Routing) format, such as 1.1.1.0/24. Entering a value in this field is optional. |
| <strong>Destination Port</strong> | Specifies the traffic destination port: for example, 80 for HTTP traffic. |
| <strong>Redirected Destination IP</strong> | Specifies the IP address of your Content Gateway server. |
| <strong>Redirected Destination Port</strong> | Specifies the proxy port: for example, 8080 for HTTP traffic. |
| <strong>User Protocol</strong> (Optional) | When <em>dns</em> is selected, the ARM redirects DNS traffic to Content Gateway: otherwise, DNS traffic is bypassed. |
| <strong>Apply</strong> | Applies the configuration changes. |</p>
<table>
<thead>
<tr>
<th>Configuration Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Close</strong></td>
<td>Exits the configuration file editor.</td>
</tr>
<tr>
<td></td>
<td><strong>Click Apply</strong> before you click Close; otherwise, all configuration changes are discarded.</td>
</tr>
<tr>
<td><strong>IP Spoofing:</strong> Enabled/Disabled</td>
<td>Enables or disables the IP spoofing option, which configures Content Gateway to establish connections to origin servers with the client IP address instead of the Content Gateway IP address. For more information, see <a href="#">IP spoofing, page 77</a>.</td>
</tr>
<tr>
<td></td>
<td><strong>WARNING:</strong> IP spoofing requires precise control of the routing paths on your network, overriding the normal routing process for traffic running on TCP port 80 and 443.</td>
</tr>
<tr>
<td><strong>Range Based IP Spoofing:</strong> Enabled/Disabled</td>
<td>Enables or disables the range-based IP spoofing extension. This extension supports the specification of IP addresses and ranges of addresses that are mapped to specified IP addresses for spoofing.</td>
</tr>
<tr>
<td></td>
<td>Many groups can be specified. However, use this feature judiciously because list traversal adds overhead to every connection request. The larger the list, the more overhead.</td>
</tr>
<tr>
<td></td>
<td>The list is traversed in order (as displayed). The first match is applied.</td>
</tr>
<tr>
<td></td>
<td>Clients that don’t match a grouping are spoofed with their own IP address (basic IP spoofing).</td>
</tr>
<tr>
<td></td>
<td>For more information, see <a href="#">IP spoofing, page 77</a>.</td>
</tr>
<tr>
<td><strong>Range Based IP Spoofing:</strong> Address table</td>
<td>In the <strong>Client IP Addresses</strong> field, enter a comma separated list of individual IP addresses and/or IP address ranges. Do not use spaces.</td>
</tr>
<tr>
<td></td>
<td>You can use:</td>
</tr>
<tr>
<td></td>
<td>• A simple IP address, such as 123.45.67.8</td>
</tr>
<tr>
<td></td>
<td>• CIDR (Classless Inter-Domain Routing) format, such as 1.1.1.0/24.</td>
</tr>
<tr>
<td></td>
<td>• A range separated by a dash, such as 1.1.1.1-2.2.2.2</td>
</tr>
<tr>
<td></td>
<td>• Any combination of the above, separated by commas, such as:</td>
</tr>
<tr>
<td></td>
<td>1.1.1.0/24,25.25.25.25,123.1.23.1-123.1.23.123</td>
</tr>
<tr>
<td></td>
<td>• A maximum of 64 IPv4 addresses or 32 IPv4 address ranges.</td>
</tr>
<tr>
<td></td>
<td>In the <strong>Spoofed IP Address</strong> field, enter the IP address to use with matching clients. This is the spoofed IP address.</td>
</tr>
<tr>
<td></td>
<td>To add a row to the table, click <strong>Add Row</strong>.</td>
</tr>
<tr>
<td></td>
<td>To remove a row from the table, delete the contents of the cells. When you click <strong>Apply</strong> the empty row(s) is removed.</td>
</tr>
<tr>
<td></td>
<td>The table always has a minimum of 5 rows.</td>
</tr>
<tr>
<td></td>
<td><strong>Restart Content Gateway</strong> to put changes into effect.</td>
</tr>
</tbody>
</table>
## Configure > Networking > ARM > Static Bypass

Static bypass rules route requests around the proxy (bypass). Rules can be defined for clients (sources), origin servers (destinations), or both (pairs). See *Static bypass rules*, page 72.

### Important

This feature is for transparent proxy deployments only.

<table>
<thead>
<tr>
<th>Static Bypass table</th>
<th>Lists the configured static bypass rules. When Content Gateway is serving transparent traffic, the proxy uses these rules to determine whether to bypass incoming client requests or attempt to serve them transparently. Rules are stored in <code>bypass.config</code>.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date rules in the <code>bypass.config</code> file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor for the <code>bypass.config</code> file.</td>
</tr>
</tbody>
</table>

### bypass.config Configuration File Editor

<table>
<thead>
<tr>
<th>rule display box</th>
<th>Lists the <code>bypass.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
</tbody>
</table>

**Rule Type**

Specifies the rule type:

- A **bypass** rule bypasses specified incoming requests.
- A **deny_dyn_bypass** rule prevents the proxy from bypassing specified incoming client requests dynamically (a deny bypass rule can prevent Content Gateway from bypassing itself).

**Source IP**

Specifies the source IP address in incoming requests that the proxy must bypass or deny bypass. The IP address can be one of the following:

- A simple IP address, such as 123.45.67.8
- In CIDR (Classless Inter-Domain Routing) format, such as 1.1.1.0/24.
- A range separated by a dash, such as 1.1.1.1-2.2.2.2
- Any combination of the above, separated by commas, such as 1.1.1.0/24, 25.25.25.25, 123.1.23.1-123.123.123.
**Configuration Options**

**Destination IP**
Specifies the destination IP address of incoming requests that the proxy must bypass or deny bypass. The IP address can be one of the following:
- A simple IP address, such as 123.45.67.8
- In CIDR (Classless Inter-Domain Routing) format, such as 1.1.1.0/24
- A range separated by a dash, such as 1.1.1.1-2.2.2.2
- Any combination of the above, separated by commas, such as 1.1.1.0/24, 25.25.25.25, 123.1.23.1-123.1.23.123

**Apply**
Applies the configuration changes.

**Close**
Exits the configuration file editor.
Click **Apply** before you click **Close**; otherwise, all configuration changes will be lost.

---

**Configure > Networking > ARM > Dynamic Bypass**

**Dynamic Bypass**
Enables or disables the dynamic bypass option to bypass the proxy and go directly to the origin server when clients or servers cause problems. Dynamic bypass rules are deleted when you stop Content Gateway.

**Behavior: Non-HTTP, Port 80**
Select **Enabled** to enable dynamic bypass when Content Gateway encounters non-HTTP traffic on port 80.
Select **Disabled** to disable dynamic bypass when Content Gateway encounters non-HTTP traffic on port 80.
Select **Source-Destination** to enable dynamic source/destination bypass when Content Gateway encounters non-HTTP traffic on port 80.
Select **Destination Only** to enable dynamic destination bypass when Content Gateway encounters non-HTTP traffic on port 80.

**Behavior: HTTP 400**
Select **Enabled** to enable dynamic bypass when an origin server returns a 400 error.
Select **Disabled** to disable dynamic bypass when an origin server returns a 400 error.
Select **Source-Destination** to enable dynamic source/destination bypass when an origin server returns a 400 error.
Select **Destination Only** to enable dynamic destination bypass when an origin server returns a 400 error.

**Behavior: HTTP 401**
Select **Enabled** to enable dynamic bypass when an origin server returns a 401 error.
Select **Disabled** to disable dynamic bypass when an origin server returns a 401 error.
Select **Source-Destination** to enable dynamic source/destination bypass when an origin server returns a 401 error.
Select **Destination Only** to enable dynamic destination bypass when an origin server returns a 401 error.
<table>
<thead>
<tr>
<th>Behavior: HTTP 403</th>
<th>Select <strong>Enabled</strong> to enable dynamic bypass when an origin server returns a 403 error.&lt;br&gt;Select <strong>Disabled</strong> to disable dynamic bypass when an origin server returns a 403 error.&lt;br&gt;Select <strong>Source-Destination</strong> to enable dynamic source/destination bypass when an origin server returns a 403 error.&lt;br&gt;Select <strong>Destination Only</strong> to enable dynamic destination bypass when an origin server returns a 403 error.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behavior: HTTP 405</td>
<td>Select <strong>Enabled</strong> to enable dynamic bypass when an origin server returns a 405 error.&lt;br&gt;Select <strong>Disabled</strong> to disable dynamic bypass when an origin server returns a 405 error.&lt;br&gt;Select <strong>Source-Destination</strong> to enable dynamic source/destination bypass when an origin server returns a 405 error.&lt;br&gt;Select <strong>Destination Only</strong> to enable dynamic destination bypass when an origin server returns a 405 error.</td>
</tr>
<tr>
<td>Behavior: HTTP 406</td>
<td>Select <strong>Enabled</strong> to enable dynamic bypass when an origin server returns a 406 error.&lt;br&gt;Select <strong>Disabled</strong> to disable dynamic bypass when an origin server returns a 406 error.&lt;br&gt;Select <strong>Source-Destination</strong> to enable dynamic source/destination bypass when an origin server returns a 406 error.&lt;br&gt;Select <strong>Destination Only</strong> to enable dynamic destination bypass when an origin server returns a 406 error.</td>
</tr>
<tr>
<td>Behavior: HTTP 408</td>
<td>Select <strong>Enabled</strong> to enable dynamic bypass when an origin server returns a 408 error.&lt;br&gt;Select <strong>Disabled</strong> to disable dynamic bypass when an origin server returns a 408 error.&lt;br&gt;Select <strong>Source-Destination</strong> to enable dynamic source/destination bypass when an origin server returns a 408 error.&lt;br&gt;Select <strong>Destination Only</strong> to enable dynamic destination bypass when an origin server returns a 408 error.</td>
</tr>
<tr>
<td>Behavior: HTTP 500</td>
<td>Select <strong>Enabled</strong> to enable dynamic bypass when an origin server returns a 500 error.&lt;br&gt;Select <strong>Disabled</strong> to disable dynamic bypass when an origin server returns a 500 error.&lt;br&gt;Select <strong>Source-Destination</strong> to enable dynamic source/destination bypass when an origin server returns a 500 error.&lt;br&gt;Select <strong>Destination Only</strong> to enable dynamic destination bypass when an origin server returns a 500 error.</td>
</tr>
</tbody>
</table>
The options defined in the `wccp.config` configuration file control the use of WCCP with Content Gateway. Entries should be defined and maintained using the editor provided on Configure > Networking > WCCP.

Administrators should have a good working knowledge of WCCP.

Only WCCP v2 is supported.

It is recommended that you consult the documentation and the manufacturer’s support site for information regarding optimal configuration and performance of your WCCP v2 device. Most devices should be configured to take best advantage of hardware-based redirection. With Cisco devices, the most recent version of IOS is usually best.

For every active WCCP service group, there must be a corresponding ARM NAT rule. See ARM, page 364.

For a complete description of Content Gateway support for WCCP v2, see Transparent interception with WCCP v2 devices, page 50.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCCP Service Groups</td>
<td>Displays a table of the service groups defined in the <code>wccp.config</code> file. WCCP service group configuration defines WCCP behavior. Column fields are explained in the Configuration Editor entries below.</td>
</tr>
<tr>
<td>Refresh</td>
<td>Refreshes the table to display the current definitions in the <code>wccp.config</code> file.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens <code>wccp.config</code> in the configuration file editor.</td>
</tr>
</tbody>
</table>
### Synchronize in the Cluster

When there are several Content Gateway nodes in a cluster:

- **Enable** this option to cause the WCCP configuration \texttt{(wccp.config)} to be synchronized in the cluster. This allows configuration changes to be made on any node in the cluster.

- **Disable** this option to cause the WCCP configuration to **not** be synchronized in the cluster. This requires that changes to the WCCP configuration be made individually on each node. A common use case for this is to control which service groups are enabled/disabled on each node, and to use proportional load distribution with \texttt{weight}.

  If after being disabled this option is enabled, the configuration on the node on which the option is enabled is used to initially synchronize the cluster.

---

#### wccp.config Configuration File Editor

- **Service group display box**
  - Lists the WCCP service group definitions.
  - Select an entry in the list to edit it.
  - Use the “X” button to delete the selection.
  - List order has no meaning; therefore, the up and down arrows can be ignored.

- **Add**
  - Adds a new service group definition. After Add is clicked, the new definition is displayed in the box at the top of the page.

- **Set**
  - Accepts modifications to the selected service group definition, displaying the new values in the box at the top of the page.

---

#### Service Group Information

- **Service Group Status**
  - Enables or disables the service group.
  - If you change this option, you must restart Content Gateway.

- **Service Group Name**
  - Specifies a unique service group name. This is as an aid to administration.

- **Service Group ID**
  - Specifies a service group ID between 0-255. This ID must also be configured on the router(s).
  - If the specified number is already in use, an error is displayed when Add or Set is clicked.

- **Protocol**
  - Specifies the protocol, TCP or UDP, that applies to this service group.

- **Ports**
  - Specifies up to 8 ports in a comma separated list.

- **Network Interface**
  - Specifies the Ethernet interface on this Content Gateway host system to use with this service group.
  - On a V10000 appliance, eth0 is bound to P1 and eth1 is bound to P2.

---

#### Mode Negotiation
## Configuration Options

### Special Device Profile
- **Description**: Select **ASA Firewall** to specify that traffic is routed to the proxy by a Cisco ASA firewall. When this option is selected, GRE is automatically selected as the Packet Forward Method and Packet Return Method. These settings are required and cannot be changed.

### Packet Forward Method
- **Description**: Specifies the preferred encapsulation method used by the WCCP router to transmit intercepted traffic to the proxy. If the router supports GRE and L2, the method specified here is used.
  - **Important**: GRE and Multicast are incompatible.
  - **Important**: If you change the forward or return method configuration while there is an active connection with the WCCP device, in order to renegotiated the method you must force the current connection to terminate. Typically, this means turning off the service group on the WCCP device for 60 seconds. See the documentation for your WCCP device.

### Packet Return Method
- **Description**: Specifies the preferred packet encapsulation method used to return intercepted traffic to the WCCP router.
  - **Note**: If Content Gateway is configured with a Forward/Return method that the router does not support, the proxy attempts to negotiate a method supported by the router.
  - **Note**: Selecting L2 requires that the router or switch be Layer 2-adjacent (in the same subnet) as Content Gateway.

### Advanced Settings

#### Assignment Method
- **Description**: Specifies the method that the router will use to distribute intercepted traffic across multiple proxy servers. Choices are **HASH** and **MASK**.
  - The MASK value is applied up to 6 significant bits (in a cluster, a total of 64 buckets are created).
  - See your WCCP documentation for more information about assignment method. Use the value recommended in the manufacturer’s documentation for your device.

#### Distribution attribute(s)
- **Description**: Specifies the attribute that the assignment method uses to determine which requests are distributed to which proxy servers.
  - If the assignment method is HASH, select one or more distribution attributes.
  - If the assignment method is MASK, select one distribution attribute.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>This option is only useful when Synchronize in the Cluster is disabled. Specifies the distribution of requests to servers in a cluster by proportional weighting. Set weight to a value that is the desired proportion of the total flow of traffic. When all cluster members have a value of 0 (the default), distribution is equal. If any member has a non-zero value, distribution is proportional, relative to the weight values of other members. Members that continue to have a value of zero, receive no traffic. See WCCP load distribution, page 53.</td>
</tr>
<tr>
<td>Reverse Service Group ID</td>
<td>For use when IP spoofing is enabled. When IP spoofing is enabled, the proxy advertises a reverse service group for each enabled WCCP forward service group. The reverse service group must be applied along the return path of origin server responses to the proxy.</td>
</tr>
<tr>
<td>Router Information</td>
<td></td>
</tr>
<tr>
<td>Security (optional)</td>
<td>Enables or disables security so that the router and Content Gateway can authenticate each other. If you enable security in Content Gateway, you must also enable security on the router. See your router documentation. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Security:Password</td>
<td>Specifies the password used for authentication. The password must be the same password as that configured on the router and can be a maximum of eight characters long. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Multicast (optional)</td>
<td>Enables or disables WCCP multicast mode. Important: Cannot be used with GRE packet Forward/Return method. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>Multicast: IP Address</td>
<td>Specifies the multicast IP address. If you change this option, you must restart Content Gateway.</td>
</tr>
<tr>
<td>WCCP Routers: Router IP Address</td>
<td>Specifies the IP addresses of up to 10 WCCP v2-enabled routers. If you change this option, you must restart Content Gateway.</td>
</tr>
</tbody>
</table>
## Configuration Options

**Option**	**Description**
**WCCP Routers: Local GRE Tunnel Endpoint IP Address** | If GRE is selected for Packet Return Method, also specify Local GRE Tunnel Endpoint IP Addresses, **except** when the device is an ASA firewall. These are Content Gateway tunnel endpoints for the associated Router IP Addresses. A Local GRE Tunnel Endpoint IP Address:
- Must be unique for every router in the table
- Must not be assigned to any other device
- Must be a routable IP address
- Should reside on the same subnet as the proxy. If it is not, you must define a route for it.
- Is not intended to be a client-facing proxy IP address
- Is bound to the physical interface specified for the service group (on a V-Series appliance, eth0 = P1; eth1 = P2)

**WCCP Routers: GRE Tunnel Next Hop Router IP Address** | Specify a GRE Tunnel Next Hop Router IP Address (must be in IPv4 format) when GRE Packet Return Method is configured and Content Gateway does not have a route back to the WCCP router. You can use “ping” to test connectivity to the router.

### DNS Proxy

Help | Content Gateway | Version 8.1.x

---

**Note**

The DNS Proxy configuration options appear on the Configure pane only if you have enabled DNS Proxy in the Features table on the Configure > My Proxy > Basic > General tab.

### Configure > Networking > DNS Proxy

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Proxy Port</td>
<td>Specifies the port that Content Gateway uses for DNS traffic. The default port is 5353.</td>
</tr>
</tbody>
</table>
### DNS Resolver

Configure > Networking > DNS Resolver > Resolver

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Local Domain Expansion</strong></td>
<td>Enables or disables local domain expansion so that Content Gateway can attempt to resolve unqualified hostnames by expanding to the local domain. For example, if a client makes a request to an unqualified host named <code>hostx</code>, and if the WCG local domain is <code>y.com</code>, Content Gateway expands the hostname to <code>hostx.y.com</code>.</td>
</tr>
<tr>
<td><strong>DNS Preference</strong></td>
<td>Specifies the IP version preference when IPv6 support is enabled in Content Gateway and a web server supports both IPv4 and IPv6. Select IPv4 to cause the proxy to prefer IPv4. Select IPv6 to cause the proxy to prefer IPv6. The DNS Preference is not applied to FTP requests made in transparent proxy mode. The proxy uses the IP address sent with the request.</td>
</tr>
<tr>
<td><strong>Refresh</strong></td>
<td>Updates the table to display the most up-to-date rules. Click this button after you have added or modified rules with the configuration file editor.</td>
</tr>
<tr>
<td><strong>Edit File</strong></td>
<td>Opens the configuration file editor.</td>
</tr>
<tr>
<td><strong>dns_prefer_exception.config File Editor</strong></td>
<td>Displays an ordered list of the <code>dns_prefer_exception.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</td>
</tr>
<tr>
<td><strong>Add</strong></td>
<td>Adds a new rule to the rule display box. Enter information in the fields provided before clicking this button.</td>
</tr>
<tr>
<td><strong>Set</strong></td>
<td>Updates the selected rule with the values in the entry fields.</td>
</tr>
<tr>
<td><strong>Name</strong></td>
<td>Specify a unique name to aid in administering rules.</td>
</tr>
<tr>
<td><strong>Destination Host</strong></td>
<td>Specify the destination hostname.</td>
</tr>
<tr>
<td><strong>Preferred Format</strong></td>
<td>Specify the preferred IP version, IPv4 or IPv6.</td>
</tr>
<tr>
<td><strong>Apply</strong></td>
<td>Applies the configuration changes.</td>
</tr>
<tr>
<td><strong>Close</strong></td>
<td>Exits the configuration file editor. Click <strong>Apply</strong> before you click <strong>Close</strong>; otherwise, all configuration changes are lost.</td>
</tr>
</tbody>
</table>
**Configuration Options**

**Configure > Networking > DNS Resolver > Host Database**

These settings pertain to all DNS name resolution performed by Content Gateway, including DNS Proxy.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Lookup Timeout</td>
<td>Specifies the maximum number of seconds the proxy can wait for a lookup response from the DNS server. Specifies how long, in seconds, the proxy will wait before making a second DNS request if there is no response to the first request. The value is stored in “proxy.config.hostdb.lookup_timeout”. The default value is 120 seconds. **Important:** This setting is not used. Instead the records.config entry “proxy.config.dns.lookup_timeout” is used. The default value is 20 seconds. <strong>proxy.config.dns.lookup_timeout</strong> specifies how long the proxy will wait for the DNS response after sending the request.</td>
</tr>
<tr>
<td>Foreground Timeout</td>
<td>Specifies how long DNS entries remain in the host database before they are flagged as stale. This setting is used only when “proxy.config.hostdb.ttl_mode” is not zero (the default value is 0, which means use the time-to-live (ttl) value set by the DNS server. See HostDB, page 468. For example, if this timeout is 24 hours and a client requests an entry that has been in the database for 24 hours or longer, the proxy refreshes the entry before serving it. The default is 86400 seconds (144 minutes). <strong>Caution:</strong> Setting the foreground timeout too low might slow response time. Setting it too high risks accumulation of incorrect information.</td>
</tr>
<tr>
<td>Failed DNS Timeout</td>
<td>Specifies how long, in seconds, that a hostname is retained in the failed DNS lookup cache (default = 60). When the timeout expires, the hostname is removed from the cache and the next request for that hostname is sent to the DNS server. A DNS lookup failure is considered to have occurred when: • There is no DNS response • There is a DNS response error code, including NXDOMAIN • There is an error parsing the DNS response code (there is a malformed response). Zero (0) is not a legal value.</td>
</tr>
</tbody>
</table>
## Configure > Networking > DNS Resolver > Split DNS

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Split DNS</strong></td>
<td>Enables or disables the Split DNS option. When enabled, Content Gateway can use multiple DNS servers, depending on your security requirements. For example, you can configure the proxy to look to one set of DNS servers to resolve hostnames on your internal network, while allowing DNS servers outside the firewall to resolve hosts on the Internet. For information about using Split DNS, see <em>Using the Split DNS option</em>, page 190.</td>
</tr>
<tr>
<td><strong>Default Domain</strong></td>
<td>Specifies the default domain used for split DNS requests. If a hostname does not include a domain, Content Gateway appends the default domain name to the hostname before choosing which DNS server to use.</td>
</tr>
<tr>
<td><strong>DNS Servers</strong></td>
<td>Displays a table listing the rules in the <code>splitdns.config</code> file that control which DNS server the proxy uses for resolving hosts under specific conditions.</td>
</tr>
<tr>
<td><strong>Refresh</strong></td>
<td>Updates the table to display the most up-to-date rules in the <code>splitdns.config</code> file. Click this button after you have added or modified rules with the configuration file editor.</td>
</tr>
<tr>
<td><strong>Edit File</strong></td>
<td>Opens the configuration file editor so that you can edit and add rules to the <code>splitdns.config</code> file. The configuration file editor page is described below.</td>
</tr>
</tbody>
</table>

### splitdns.config Configuration File Editor

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule display box</td>
<td>Lists the <code>splitdns.config</code> file rules. Select a rule to edit it. The buttons on the left of the box allow you to delete or move the selected rule up or down in the list.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a new rule to the rule display box at the top of the configuration file editor page. Enter information in the fields provided before you click this button.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page. Select a rule and change its properties before you click this button.</td>
</tr>
<tr>
<td><strong>Primary Destination Type</strong></td>
<td>Specifies that DNS server selection is based on the destination domain (dest_domain), destination host (dest_host), or on a regular expression (url_regex).</td>
</tr>
<tr>
<td><strong>Primary Destination Value</strong></td>
<td>Specifies the value of the primary destination. Place the symbol “!” at the beginning of the value to specify the NOT logical operator.</td>
</tr>
<tr>
<td><strong>DNS Server IP</strong></td>
<td>Specifies the DNS server to use with the primary destination specifier. You can specify a port using a colon (:). If you do not specify a port, 53 is used. You can specify multiple DNS servers separated by spaces or by semicolons (;).</td>
</tr>
</tbody>
</table>
ICAP

ICAP provides an alternate interface to TRITON AP-DATA and Websense Data Security Suite, and other data security services that are ICAP-conversant. A primary and backup URI can be specified, and failover and load balancing can be configured. See Configuring the ICAP client, page 136 and the subsection for ICAP failover and load balancing, page 137.

Configure > Networking > ICAP

<table>
<thead>
<tr>
<th>Default Domain Name (Optional)</th>
<th>Specifies the default domain name to use for resolving hosts. Only one entry is allowed. If you do not provide the default domain, the system determines its value from /etc/resolv.conf.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain Search List (Optional)</td>
<td>Specifies the domain search order. You can specify multiple domains separated by spaces or by semicolons (;). If you do not provide the search list, the system determines the value from /etc/resolv.conf.</td>
</tr>
<tr>
<td>Apply</td>
<td>Applies the configuration changes.</td>
</tr>
<tr>
<td>Close</td>
<td>Exits the configuration file editor. Click Apply before you click Close; otherwise, all configuration changes are lost.</td>
</tr>
<tr>
<td>ICAP Service URI</td>
<td>Specifies the Uniform Resource Identifier for the ICAP service. The format is: icap://hostname:port/path For example: icap://ICAP_machine:1344/reqmod The default ICAP port is 1344. If you are using the default port, you need not specify it in the URI. An optional secondary URI service can be specified immediately after the first by adding a comma and the URI of the second service, no spaces.</td>
</tr>
<tr>
<td>Analyze HTTPS Content</td>
<td>Select whether decrypted traffic should be sent to the data protection software for analysis or sent directly to the destination.</td>
</tr>
<tr>
<td>Analyze FTP Uploads</td>
<td>Select whether to send FTP upload requests to the data protection software for analysis. The FTP proxy feature must be enabled. See FTP, page 328.</td>
</tr>
</tbody>
</table>
### Virtual IP

Configure > Networking > Virtual IP

<table>
<thead>
<tr>
<th>Virtual IP Addresses</th>
<th>Displays a table listing the virtual IP addresses managed by Content Gateway.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td>Updates the table to display the most up-to-date list of virtual IP addresses. Click this button after you have added to or modified the list of virtual IP addresses with the configuration file editor.</td>
</tr>
<tr>
<td>Edit File</td>
<td>Opens the configuration file editor so that you can edit and add to the list of virtual IP addresses.</td>
</tr>
<tr>
<td>vaddrs.config</td>
<td>Configuration File Editor</td>
</tr>
<tr>
<td>rule display box</td>
<td>Lists the virtual IP addresses. Select a virtual IP address to edit it. The buttons on the left of the box allow you to delete or move the selected virtual IP address up or down in the list.</td>
</tr>
<tr>
<td>Add</td>
<td>Adds a new virtual IP address to the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Set</td>
<td>Updates the rule display box at the top of the configuration file editor page.</td>
</tr>
<tr>
<td>Virtual IP Address</td>
<td>Specifies the virtual IP address managed by Content Gateway.</td>
</tr>
<tr>
<td>Ethernet Interface</td>
<td>Specifies the network interface assigned to the virtual IP address.</td>
</tr>
<tr>
<td>Sub-Interface</td>
<td>Specifies the subinterface ID. This is a number between 1 and 255 that the interface uses for the address.</td>
</tr>
</tbody>
</table>
Health Check URLs

Help | Content Gateway | Version 8.1.x

Content Gateway includes 3 URLs that return proxy health and performance information in the HTTP response. These URLs are designed to help load balancers optimize performance by acquiring and adjusting for real-time state information of each proxy node.

The default port for health check URLs is 8083. The value can be changed in records.config by assigning the desired value to `proxy.config.admin.autoconf_port`.

Configure > Networking > Health Check URLs

Force Health Checks to Report Proxy Down

| Enable/Disable | When enabled, all health check URLs sent to this proxy report WSDOWN. The URL response will be similar to: HTTP/1.0 503 Service Unavailable Server: Content Gateway Manager 7.7.0 Date: Thu, 26 Jul 2012 20:26:14 GMT Cache-Control: no-store Pragma: no-cache Content-type: text/plain Content-length: 6
WSDOWN
| Health Check URLs | The load balancer should consider the service down if the URL request fails for the following reasons: • No TCP connection -- proxy down • Response too slow -- proxy deadlocked or not responsive • Invalid response
| http://[Content Gateway IP address]: 8083/health.basic | Checks connectivity with Content Gateway and responds with WSUP or WSDOWN. |
A format file, `/opt/WCG/config/health.load.template`, allows for customization of the response format.

Format specifiers are:

- `%L` = Load (integer)
- `%C` = Connections (integer)
- `%B` = Bandwidth in Mbps (double)
- `%%` = `%`

The default `health.load.template` file is:

```
Load=%L
Conns=%C
Mbps=%B
```

Here is `health.load.template` modified to respond with an XML-like format:

```
<load>
 <item name="Load" value="%L" />
 <item name="Conns" value="%C" />
</load>
```

<table>
<thead>
<tr>
<th>http://[Content Gateway IP address]: 8083/health.app.filtering</th>
<th>Checks the health of Filtering Service responses to Content Gateway requests and reports WSUP or WSDOWN.</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://[Content Gateway IP address]: 8083/health.load</td>
<td>If the health.basic URL reports WSDOWN, this URL also reports WSDOWN. Otherwise, health.load returns:</td>
</tr>
<tr>
<td></td>
<td>- CPU usage (operating system load average)</td>
</tr>
<tr>
<td></td>
<td>- Connection usage (number of open connections)</td>
</tr>
<tr>
<td></td>
<td>- Bandwidth usage</td>
</tr>
<tr>
<td></td>
<td>How these values are calculated and how they can be customized is described below.</td>
</tr>
<tr>
<td></td>
<td>The default response will look similar to:</td>
</tr>
<tr>
<td></td>
<td>HTTP/1.0 200 OK</td>
</tr>
<tr>
<td></td>
<td>Server: Content Gateway Manager 7.7.0</td>
</tr>
<tr>
<td></td>
<td>Date: Thu, 26 Jul 2012 20:26:14 GMT</td>
</tr>
<tr>
<td></td>
<td>Cache-Control: no-store</td>
</tr>
<tr>
<td></td>
<td>Pragma: no-cache</td>
</tr>
<tr>
<td></td>
<td>Content-type: text/plain</td>
</tr>
<tr>
<td></td>
<td>Content-length: xx</td>
</tr>
<tr>
<td></td>
<td>Load=2253</td>
</tr>
<tr>
<td></td>
<td>Conns=5150</td>
</tr>
<tr>
<td></td>
<td>Mbps=6.42</td>
</tr>
</tbody>
</table>

The default response will look similar to:

```
HTTP/1.0 200 OK
Server: Content Gateway Manager 7.7.0
Date: Thu, 26 Jul 2012 20:26:14 GMT
Cache-Control: no-store
Pragma: no-cache
Content-type: text/plain
Content-length: xx

Load=2253
Conns=5150
Mbps=6.42
```
How the values are calculated:

The Load value, %L, is derived from the LINUX system load average. To make the value comparable across machines with varying numbers of cores, the number is divided by the number of cores on the system.

The calculation is:

```
// load avg values are 0.00 precision
double avgs[3];
// get load averages for 1, 5, and 15 minutes
getloadavg(avgs, 3);
// 5 minute_load_average * 10000 / number_of_cores
Load = avgs[1] * 10000 / get_nprocs();
```

The Connection value, %C, is the sum of
proxy.process.http.current_server_connections and

The Bandwidth value, %B, is the value of proxy.node.client_throughput_out.

---

**Note**

HTTP connection and bandwidth information can be viewed in the Content Gateway manager on the Monitor > Protocols > HTTP page.

---

**SSL**

The SSL configuration options are divided into the following categories:

- Certificates (see Managing certificates, page 156)
- Decryption/Encryption (see SSL configuration settings for inbound traffic, page 158 and SSL configuration settings for outbound traffic, page 160)
- Validation (see Validating certificates, page 161)
- Incidents (see Managing HTTPS website access, page 166)
- Client certificates (see Client certificates, page 171)
- Customization (see Customizing SSL connection failure messages, page 173)
- Internal Root CA (see Internal Root CA, page 147)
## Custom logging fields

<table>
<thead>
<tr>
<th>%&lt;field symbol&gt;</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{HTTP header field name}cqh</code></td>
<td>Logs the information in the requested field of the client request HTTP header; for example, <code>{Accept-Language}cqh</code> logs the <code>Accept-Language</code>: field in client request headers. This field cannot be used in custom log filters.</td>
</tr>
<tr>
<td><code>{HTTP header field name}cqhua</code></td>
<td>Logs the information in the requested field of the client request HTTP header; for example, <code>{User-Agent}cqhua</code> logs the <code>User-Agent</code>: field in client request headers.</td>
</tr>
<tr>
<td><code>{HTTP header field name}pqh</code></td>
<td>Logs the information in the requested field of the proxy request HTTP header; for example, <code>{Authorization}pqh</code> logs the <code>Authorization</code>: field in proxy request headers. This field cannot be used in custom log filters.</td>
</tr>
<tr>
<td><code>{HTTP header field name}psh</code></td>
<td>Logs the information in the requested field of the proxy response HTTP header; for example, <code>{Retry-After}psh</code> logs the <code>Retry-After</code>: field in proxy response headers. This field cannot be used in custom log filters.</td>
</tr>
<tr>
<td><code>{HTTP header field name}ssh</code></td>
<td>Logs the information in the requested field of the server response HTTP header; for example, <code>{Age}ssh</code> logs the <code>Age</code>: field in server response headers. This field cannot be used in custom log filters.</td>
</tr>
</tbody>
</table>

Related topic:
- *Logging format cross-reference*, page 386
<table>
<thead>
<tr>
<th>%&lt;field symbol&gt;</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>caun</td>
<td>The client authenticated user name; result of the RFC931/ident lookup of the client user name.</td>
</tr>
<tr>
<td>cfsc</td>
<td>The client finish status code; specifies whether the client request to the proxy was successfully completed (FIN) or interrupted (INTR).</td>
</tr>
<tr>
<td>chi</td>
<td>The client host IP; the IP address of the client’s host machine.</td>
</tr>
<tr>
<td>cqbl</td>
<td>The client request transfer length; the body length in the client’s request to Content Gateway in bytes.</td>
</tr>
<tr>
<td>cghl</td>
<td>The client request header length; the header length in the client’s request to Content Gateway.</td>
</tr>
<tr>
<td>cghm</td>
<td>The HTTP method in the client request to Content Gateway: GET, POST, and so on (subset of cqtx).</td>
</tr>
<tr>
<td>cghv</td>
<td>The client request HTTP version.</td>
</tr>
<tr>
<td>cgtd</td>
<td>The client request time stamp; specifies the date of the client request in the format yyyy-mm-dd, where yyyy is the 4-digit year, mm is the 2-digit month, and dd is the 2-digit day.</td>
</tr>
<tr>
<td>cgtn</td>
<td>The client request time stamp; date and time of the client’s request (in the Netscape time stamp format).</td>
</tr>
<tr>
<td>cqtq</td>
<td>The client request time stamp with millisecond resolution.</td>
</tr>
<tr>
<td>cqts</td>
<td>The client request time stamp in Squid format; the time of the client request in seconds since January 1, 1970.</td>
</tr>
<tr>
<td>cgtt</td>
<td>The client request time stamp; the time of the client request in the format hh:mm:ss, where hh is the 2-digit hour in 24-hour format, mm is the 2-digit minutes, and ss is the 2-digit seconds. For example, 16:01:19.</td>
</tr>
<tr>
<td>cqtx</td>
<td>The full HTTP client request text, minus headers. For example: GET <a href="http://www.company.com">http://www.company.com</a> HTTP/1.0</td>
</tr>
<tr>
<td>cqu</td>
<td>The client request URI; universal resource identifier (URI) of the request from client to Content Gateway (subset of cqtx).</td>
</tr>
<tr>
<td>cguc</td>
<td>The client request canonical URL; differs from cqu in that blanks (and other characters that might not be parsed by log analysis tools) are replaced by escape sequences. The escape sequence is a percentage sign followed by the ASCII code number in hex.</td>
</tr>
<tr>
<td>cqup</td>
<td>The client request URL path; specifies the argument portion of the URL (everything after the host). For example, if the URL is <a href="http://www.company.com/images/x.gif">http://www.company.com/images/x.gif</a>, this field displays /images/x.gif.</td>
</tr>
<tr>
<td>cgus</td>
<td>The client request URL scheme (HTTP, FTP, etc.).</td>
</tr>
<tr>
<td>%&lt;field symbol&gt;</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>crc</td>
<td>The cache result code; specifies how the cache responded to the request (HIT, MISS, and so on).</td>
</tr>
<tr>
<td>pfsc</td>
<td>The proxy finish status code; specifies whether the Content Gateway request to the origin server was successfully completed (FIN) or interrupted (INTR).</td>
</tr>
<tr>
<td>phn</td>
<td>The host name of the Content Gateway server that generated the log entry in collated log files.</td>
</tr>
<tr>
<td>phr</td>
<td>The proxy hierarchy route; the route that Content Gateway used to retrieve the object.</td>
</tr>
<tr>
<td>pqbl</td>
<td>The proxy request transfer length; the body length in the Content Gateway request to the origin server.</td>
</tr>
<tr>
<td>pqhl</td>
<td>The proxy request header length; the header length in the Content Gateway request to the origin server.</td>
</tr>
<tr>
<td>pqsi</td>
<td>The proxy request server IP address (0 on cache hits and parent-ip for requests to parent proxies).</td>
</tr>
<tr>
<td>pgsn</td>
<td>The proxy request server name; the name of the server that fulfilled the request.</td>
</tr>
<tr>
<td>pscl</td>
<td>The proxy response transfer length; the length of the Content Gateway response to the client in bytes.</td>
</tr>
<tr>
<td>psct</td>
<td>The proxy response content type; content type of the document (for example, img/gif) from server response header.</td>
</tr>
<tr>
<td>pshl</td>
<td>The proxy response header length; the header length in the Content Gateway response to the client.</td>
</tr>
<tr>
<td>psql</td>
<td>The proxy response transfer length in Squid format (includes header and content length).</td>
</tr>
<tr>
<td>pssc</td>
<td>The proxy response status code; the HTTP response status code from Content Gateway to the client.</td>
</tr>
<tr>
<td>shi</td>
<td>The IP address resolved from the DNS name lookup of the host in the request. For hosts with multiple IP addresses, this field records the IP address resolved from that particular DNS lookup. This can be misleading for cached documents. For example, if the first request was a cache miss and came from IP1 for server S and the second request for server S resolved to IP2 but came from the cache, the log entry for the second request will show IP2.</td>
</tr>
<tr>
<td>shn</td>
<td>The host name of the origin server.</td>
</tr>
<tr>
<td>sscl</td>
<td>The server response transfer length; response length, in bytes, from origin server to Content Gateway.</td>
</tr>
<tr>
<td>sshl</td>
<td>The server response header length; the header length in the origin server’s response to Content Gateway in bytes.</td>
</tr>
<tr>
<td>sshv</td>
<td>The server response HTTP version (1.0, 1.1, and so on).</td>
</tr>
</tbody>
</table>
**Logging format cross-reference**

<table>
<thead>
<tr>
<th>%&lt;field symbol&gt;</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>sssc</strong></td>
<td>The server response status code; the HTTP response status code from origin server to Content Gateway.</td>
</tr>
<tr>
<td><strong>ttms</strong></td>
<td>The time Content Gateway spends processing the client request; the number of milliseconds between the time that the client establishes the connection with Content Gateway and the time that Content Gateway sends the last byte of the response back to the client.</td>
</tr>
<tr>
<td><strong>ttmsf</strong></td>
<td>The time Content Gateway spends processing the client request as a fractional number of seconds; specifies the time in millisecond resolution, but instead of formatting the output as an integer (as with ttms), the display is formatted as a floating-point number representing a fractional number of seconds. For example, if the time is 1500 milliseconds, this field displays 1.5 while the ttms field displays 1500 and the tts field displays 1.</td>
</tr>
<tr>
<td><strong>tts</strong></td>
<td>The time Content Gateway spends processing the client request; the number of seconds between the time that the client establishes the connection with the proxy and the time that the proxy sends the last byte of the response back to the client.</td>
</tr>
<tr>
<td><strong>wc</strong></td>
<td>The predefined or custom category of the URL for the data being scanned. For example, “News and Media”.</td>
</tr>
<tr>
<td><strong>wct</strong></td>
<td>The content type of the web page. For example, “text/html; charset=UTF-8”.</td>
</tr>
<tr>
<td><strong>wsds</strong></td>
<td>The scan disposition string such as CATEGORY_BLOCKED, PERMIT_ALL, FILTERED_AND_PASSED, etc.</td>
</tr>
<tr>
<td><strong>wsr</strong></td>
<td>The scan recommended bit (“true” or “false”). The URL database identifies and recommends data that should be analyzed further. Depending on the policy used, the data may or may not be analyzed further.</td>
</tr>
<tr>
<td><strong>wstms</strong></td>
<td>The scan time in milliseconds that it took to scan a downloaded file or page.</td>
</tr>
<tr>
<td><strong>wui</strong></td>
<td>The authenticated user’s ID used to select the policy for scanning data of the client request.</td>
</tr>
</tbody>
</table>
Squid logging formats

<table>
<thead>
<tr>
<th>Squid</th>
<th>Content Gateway Field Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>cqts</td>
</tr>
<tr>
<td>elapsed</td>
<td>ttms</td>
</tr>
<tr>
<td>client</td>
<td>chi</td>
</tr>
<tr>
<td>action/code</td>
<td>crc/psce</td>
</tr>
<tr>
<td>size</td>
<td>psql</td>
</tr>
<tr>
<td>method</td>
<td>cqhm</td>
</tr>
<tr>
<td>url</td>
<td>equc</td>
</tr>
<tr>
<td>ident</td>
<td>caun</td>
</tr>
<tr>
<td>hierarchy/from</td>
<td>phr/pqsn</td>
</tr>
<tr>
<td>content</td>
<td>psct</td>
</tr>
</tbody>
</table>

For example, if you want to create a custom format called short_sq based on the first three Squid fields, enter a line in the logs.config file as follows:

```
format:enabled:1:short_sq:%<cqts> %<ttms> %<chi>:short_sq:ASCII:none
```

See Custom format, page 248, for more information about defining custom log files.

Netscape Common logging formats

<table>
<thead>
<tr>
<th>Netscape Common</th>
<th>Content Gateway Field Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>chi</td>
</tr>
<tr>
<td>usr</td>
<td>caun</td>
</tr>
<tr>
<td>[time]</td>
<td>[cqtn]</td>
</tr>
<tr>
<td>“req”</td>
<td>“cqx”</td>
</tr>
<tr>
<td>sl</td>
<td>pssc</td>
</tr>
<tr>
<td>cl</td>
<td>pscl</td>
</tr>
</tbody>
</table>
### Netscape Extended logging formats

<table>
<thead>
<tr>
<th>Netscape Extended</th>
<th>Content Gateway Field Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>chi</td>
</tr>
<tr>
<td>usr</td>
<td>caun</td>
</tr>
<tr>
<td>[time]</td>
<td>[cqtn]</td>
</tr>
<tr>
<td>“req”</td>
<td>“cqtx”</td>
</tr>
<tr>
<td>s1</td>
<td>pssc</td>
</tr>
<tr>
<td>c1</td>
<td>pscl</td>
</tr>
<tr>
<td>s2</td>
<td>sssc</td>
</tr>
<tr>
<td>c2</td>
<td>sscl</td>
</tr>
<tr>
<td>b1</td>
<td>cqbl</td>
</tr>
<tr>
<td>b2</td>
<td>pqbl</td>
</tr>
<tr>
<td>h1</td>
<td>cqhl</td>
</tr>
<tr>
<td>h2</td>
<td>pshl</td>
</tr>
<tr>
<td>h3</td>
<td>pqhl</td>
</tr>
<tr>
<td>h4</td>
<td>sshl</td>
</tr>
<tr>
<td>xt</td>
<td>tts</td>
</tr>
</tbody>
</table>

### Netscape Extended-2 logging formats

<table>
<thead>
<tr>
<th>Netscape Extended-2</th>
<th>Content Gateway Field Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>chi</td>
</tr>
<tr>
<td>usr</td>
<td>caun</td>
</tr>
<tr>
<td>[time]</td>
<td>[cqtn]</td>
</tr>
<tr>
<td>“req”</td>
<td>“cqtx”</td>
</tr>
<tr>
<td>s1</td>
<td>pssc</td>
</tr>
<tr>
<td>c1</td>
<td>pscl</td>
</tr>
<tr>
<td>s2</td>
<td>sssc</td>
</tr>
<tr>
<td>c2</td>
<td>sscl</td>
</tr>
<tr>
<td>b1</td>
<td>cqbl</td>
</tr>
<tr>
<td>b2</td>
<td>pqbl</td>
</tr>
<tr>
<td>Netscape Extended-2</td>
<td>Content Gateway Field Symbols</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>h1</td>
<td>cqhl</td>
</tr>
<tr>
<td>h2</td>
<td>pshl</td>
</tr>
<tr>
<td>h3</td>
<td>pqhl</td>
</tr>
<tr>
<td>h4</td>
<td>sshl</td>
</tr>
<tr>
<td>xt</td>
<td>tts</td>
</tr>
<tr>
<td>route</td>
<td>phr</td>
</tr>
<tr>
<td>pfs</td>
<td>cfsc</td>
</tr>
<tr>
<td>ss</td>
<td>pfsc</td>
</tr>
<tr>
<td>crc</td>
<td>crc</td>
</tr>
</tbody>
</table>
Websense Content Gateway contains the following configuration files that you can edit to customize the proxy.

- `auth_domains.config`, page 393
- `auth_rules.config`, page 395
- `bypass.config`, page 397
- `cache.config`, page 399
- `filter.config`, page 402
- `hosting.config`, page 405
- `ip_allow.config`, page 407
- `ipnat.conf`, page 408
- `log_hosts.config`, page 409
- `logs_xml.config`, page 410
- `mgmt_allow.config`, page 417
- `parent.config`, page 418
- `partition.config`, page 421
- `records.config`, page 422
- `remap.config`, page 487
- `socks.config`, page 489
- `socks_server.config`, page 491
- `splitdns.config`, page 492
- `storage.config`, page 494
- `update.config`, page 494
- `wccp.config`, page 496
Specifying URL regular expressions (url_regex)

Entries of type url_regex within the configuration files use regular expressions to perform a match.

The following table offers examples to illustrate how to create a valid url_regex.

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Matches the character x.</td>
</tr>
<tr>
<td>.</td>
<td>Match any character.</td>
</tr>
<tr>
<td>^</td>
<td>Specifies beginning of line.</td>
</tr>
<tr>
<td>$</td>
<td>Specifies end of line.</td>
</tr>
<tr>
<td>[xyz]</td>
<td>A character class. In this case, the pattern matches either x, y, or z.</td>
</tr>
<tr>
<td>[abj-oZ]</td>
<td>A character class with a range. This pattern matches a, b, any letter from j through o, or Z.</td>
</tr>
<tr>
<td>[^A-Z]</td>
<td>A negated character class. For example, this pattern matches any character except those in the class.</td>
</tr>
<tr>
<td>r*</td>
<td>Zero or more r’s, where r is any regular expression.</td>
</tr>
<tr>
<td>r+</td>
<td>One or more r’s, where r is any regular expression.</td>
</tr>
<tr>
<td>r?</td>
<td>Zero or one r, where r is any regular expression.</td>
</tr>
<tr>
<td>r{2,5}</td>
<td>From two to five r’s, where r is any regular expression.</td>
</tr>
<tr>
<td>r{2,}</td>
<td>Two or more r’s, where r is any regular expression.</td>
</tr>
<tr>
<td>r{4}</td>
<td>Exactly 4 r’s, where r is any regular expression.</td>
</tr>
<tr>
<td>&quot;[xyz]&quot;&quot;images&quot;</td>
<td>The literal string [xyz]&quot;images&quot;</td>
</tr>
<tr>
<td>\X</td>
<td>If X is a, b, f, n, r, t, or v, then the ANSI-C interpretation of \x; Otherwise, a literal X. This is used to escape operators such as *.</td>
</tr>
<tr>
<td>\0</td>
<td>A NULL character.</td>
</tr>
<tr>
<td>\123</td>
<td>The character with octal value 123.</td>
</tr>
<tr>
<td>\x2a</td>
<td>The character with hexadecimal value 2a.</td>
</tr>
<tr>
<td>(r)</td>
<td>Matches an r; where r is any regular expression. You can use parentheses to override precedence.</td>
</tr>
<tr>
<td>rs</td>
<td>The regular expression r, followed by the regular expression s.</td>
</tr>
<tr>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>#&lt;n&gt;##</td>
<td>Inserts an end node causing regular expression matching to stop when reached. The value n is returned.</td>
</tr>
</tbody>
</table>
Examples

You can specify dest_domain=mydomain.com to match any host in mydomain.com. Likewise, you can specify dest_domain= to match any request.

auth_domains.config

The auth_domains.config file stores the list of domains that have been identified for use with Rule-Based Authentication, page 213.

Domains must be identified (added to this file) using the interface in the Content Gateway manager on the Configure > Security > Access Control > Domains tab. Do not edit this configuration file.

Format

Each line in auth_domains.config consists of a set of tags; each tag is followed by its value. For example:

type=<auth_method> name=<unique_name> use_alias=<0 or 1> <additional tags>
The set of tags varies depending on the selected authentication method.

The following table lists all of the tags.

<table>
<thead>
<tr>
<th>Tag</th>
<th>Allowed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>Specifies the authentication method: IWA, NTLM, LDAP</td>
</tr>
<tr>
<td>name</td>
<td>Specifies a unique name for the domain. This is not the actual domain name, but rather a name that is unique to the proxy and rule-based authentication.</td>
</tr>
</tbody>
</table>
| use_alias | Specifies the user name sent to filtering service if authentication is successful.  
  • 0 = send actual authenticated user name (default).  
  • 1 = send a blank username  
  • 2 = send the string specified in auth_name_string |
| alias   | Only active if use_alias=2. Specifies the static string to send as the user name for all successful authentications using this rule. |

The following table lists the additional tags used with IWA domains.

<table>
<thead>
<tr>
<th>IWA Tag</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>winauth_realm</td>
<td>Specifies the joined Windows domain to use with the rule. Content Gateway must be joined and active in that domain.</td>
</tr>
</tbody>
</table>

The following table lists the additional tags used with NTLM domains.

<table>
<thead>
<tr>
<th>NTLM Tag</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dc_list</td>
<td>Takes the IP address and port number of the primary domain controller (if no port is specified, Content Gateway uses port 139), followed by a comma separated list of secondary domain controllers to be used for load balancing and failover.</td>
</tr>
</tbody>
</table>
| dc_load_balance (optional)   | Specifies whether load balancing is used:  
  • 0 = disabled  
  • 1 = enabled  
  Note: When multiple domain controllers are specified, even if load balancing is disabled, when the load on the primary domain controller reaches the maximum number of connections allowed, new requests are sent to a secondary domain controller as a short-term failover provision, until such time that the primary domain controller can accept new connections. |
The following table lists the additional tags used with LDAP domains.

<table>
<thead>
<tr>
<th>LDAP Tag</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>server_name</td>
<td>Specifies the fully qualified domain name of the LDAP server.</td>
</tr>
<tr>
<td>server_port (optional)</td>
<td>Specifies the LDAP server port. The default is 389. To use the default Global Catalog server port, specify port 3268. If Secure LDAP is enabled, set the port to 636 or 3269 (the secure LDAP ports).</td>
</tr>
<tr>
<td>base_dn (optional)</td>
<td>Specifies the LDAP base distinguished name.</td>
</tr>
<tr>
<td>uid_filter (optional)</td>
<td>Specifies the type of service, if different from that configured on the LDAP tab. Enter sAMAccountName for Active Directory, or uid for any other service.</td>
</tr>
<tr>
<td>bind_dn (optional)</td>
<td>Specifies the bind distinguished name. This must be a Full Distinguished Name of a user in the LDAP directory service. For example: CN=John Smith,CN=USERS,DC=MYCOMPANY,DC=COM</td>
</tr>
<tr>
<td>bind_pwd (optional)</td>
<td>Specifies the password for the bind distinguished name.</td>
</tr>
<tr>
<td>sec_bind</td>
<td>Specifies whether Content Gateway will use secure communication with the LDAP server. • 0 = disabled • 1 = enabled If enabled, set the LDAP port to 636 or 3269 (secure LDAP ports).</td>
</tr>
</tbody>
</table>

**auth_rules.config**

The **auth_rules.config** file stores rules that direct specified IP addresses and IP address ranges, and/or traffic on specified inbound ports (explicit proxy only), and/or matching Request header User-Agent values to authenticate with distinct domain controllers. One or more domain controllers can be specified in an ordered list. This feature is called Rule-Based Authentication, page 213.

Rule-based authentication rules must be defined in the Content Gateway manager on the Configure > Security > Access Control > Authentication Rules tab. Do not edit this configuration file.

- Rule-based authentication is supported for Integrated Windows Authentication (IWA), legacy NTLM, and LDAP authentication only.
Each authentication rule can specify source IP addresses, inbound port (explicit proxy only), and/or a User-Agent regex.

Each authentication rule can specify one or more domains in an ordered list. Domains are identified on the Configure > Security > Access Control > Authentication Rules tab. That process includes specifying the authentication method (IWA, Legacy NTLM, LDAP).

When a rule matches, authentication is performed against one or more domains in the ordered list. The first successful authentication ends domain list traversal and the authenticating domain is cached for later use.

Authentication rules are applied from the list top-down; only the first match is applied. If no rule matches, no user authentication is performed.

---

**Note**

If all the users in your network can be authenticated by domain controllers that share trust relationships, you probably don’t need rule-based authentication.

However, rule-based authentication can be useful in any deployment that needs to perform special authentication handling based on IP address, inbound proxy port (explicit proxy), and/or User-Agent values.

---

**Format**

Each line in auth_rules.config contains an authentication rule that consists of a set of tags, each followed by its value. Authentication rules have the format:

```
rule_name=<name> src_ip=<IP addresses> user_agent=<regex> <additional tags>
```

The following table lists all of the tags.

<table>
<thead>
<tr>
<th>Tags</th>
<th>Allowed value</th>
</tr>
</thead>
<tbody>
<tr>
<td>rule_name</td>
<td>A short, unique name.</td>
</tr>
<tr>
<td>enabled</td>
<td>Specifies whether the rule will be active:</td>
</tr>
<tr>
<td></td>
<td>• 0 = disabled</td>
</tr>
<tr>
<td></td>
<td>• 1 = enabled</td>
</tr>
<tr>
<td>src_ip</td>
<td>Takes a comma separated list of IP addresses and IP address ranges. No spaces. If this field is empty, all IP addresses match. The list can contain up to:</td>
</tr>
<tr>
<td></td>
<td>• 64 IPv4 addresses</td>
</tr>
<tr>
<td></td>
<td>• 32 IPv4 address ranges</td>
</tr>
<tr>
<td></td>
<td>• 24 IPv6 addresses</td>
</tr>
<tr>
<td></td>
<td>• 12 IPv6 address ranges</td>
</tr>
<tr>
<td>user_agent (optional)</td>
<td>Takes a regular expression that is applied to the user-agent string. See Specifying URL regular expressions (url_regex) for information on using regular expressions.</td>
</tr>
</tbody>
</table>
The `bypass.config` file contains static bypass rules that Content Gateway uses in transparent proxy mode. Static bypass rules instruct Content Gateway to bypass certain incoming client requests so that they are served by the origin server.

The `bypass.config` file also accepts dynamic deny bypass rules. See Dynamic deny bypass rules, page 398.

You can configure three types of static bypass rules:

- **Source bypass** rules configure the proxy to bypass a particular source IP address or range of IP addresses. For example, you can bypass clients that do not want to use caching.
- **Destination bypass** rules configure the proxy to bypass a particular destination IP address or range of IP addresses. For example, you can bypass origin servers that use IP authentication based on the client’s real IP address.

---

**Important**

Destination bypass rules prevent the proxy from caching an entire site. You will experience hit rate impacts if the site you bypass is popular.

- **Source/destination pair** bypass rules configure the proxy to bypass requests that originate from the specified source to the specified destination. For example, you can route around specific client-server pairs that experience broken IP authentication or out-of-band HTTP traffic problems when cached. Source/destination bypass rules can be preferable to destination rules because they block a destination server only for users that experience problems.
Format

Bypass rules have the following format:

```
bypass src ipaddress | dst ipaddress | src ipaddress AND dst ipaddress
```

### Option Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
</table>
| `src ipaddress` | Specifies the source (client) IP address in incoming requests that the proxy must bypass. `ipaddress` can be one of the following: A simple IP address, such as `123.45.67.8`  
  - In CIDR (Classless Inter-Domain Routing) format, such as `1.1.1.0/24`  
  - A range separated by a dash, such as `1.1.1.1-2.2.2.2`  
  - Any combination of the above, separated by commas, such as `1.1.1.0/24, 25.25.25.25, 123.1.23.1-123.1.23.123` |
| `dst ipaddress` | Specifies the destination (origin server) IP address in incoming requests that the proxy must bypass. `ipaddress` can be one of the following: A simple IP address, such as `123.45.67.8`  
  - In CIDR (Classless Inter-Domain Routing) format, such as `1.1.1.0/24`  
  - A range separated by a dash, such as `1.1.1.1-2.2.2.2`  
  - Any combination of the above, separated by commas, such as `1.1.1.0/24, 25.25.25.25, 123.1.23.1-123.1.23.123` |
| `src ipaddress` \ AND \ `dst ipaddress` | Specifies the source and destination IP address pair that the proxy must bypass. `ipaddress` can be a single IP address, an IP address range, or a combination of both separated by commas |

### Dynamic deny bypass rules

In addition to static bypass rules, the `bypass.config` file also accepts `dynamic deny` bypass rules.

Deny bypass rules prevent the proxy from bypassing certain incoming client requests dynamically (a deny bypass rule can prevent the proxy from bypassing itself). Dynamic deny bypass rules can be source, destination, or source/destination and have the following format:

```
deny_dyn_bypass src ipaddress | dst ipaddress | src ipaddress AND dst ipaddress
```
For a description of the options, see the table in *Format, page 398.*

**Note**
For the dynamic deny bypass rules to work, you must enable the **Dynamic Bypass** option in the Content Gateway manager or set the variable `proxy.config.arm.bypass_dynamic_enabled` to 1 in the `records.config` file.

**Important**
Static bypass rules overwrite dynamic deny bypass rules. Therefore, if a static bypass rule and a dynamic bypass rule contain the same IP address, the dynamic deny bypass rule is ignored.

### Examples

The following example shows source, destination, and source/destination *bypass* rules:

```plaintext
bypass src 1.1.1.0/24, 25.25.25.25, 128.252.11.11-128.252.11.255
bypass dst 24.24.24.0/24
bypass src 25.25.25.25 AND dst 24.24.24.0
```

The following example shows source, destination, and source/destination *dynamic deny bypass* rules:

```plaintext
deny_dyn_bypass src 128.252.11.11-128.252.11.255
deny_dyn_bypass dst 111.111.11.1
deny_dyn_bypass src 111.11.11.1 AND dst 111.11.1.1
```

### cache.config

The `cache.config` file defines how the proxy caches Web objects. You can add caching rules to specify the following configuration:

- Not to cache objects from specific IP addresses
- How long to pin particular objects in the cache
- How long to consider cached objects as fresh
Configuration Files

- Whether to ignore no-cache directives from the server

**Important**

After you modify this file, run `content_line -x` from the Content Gateway bin directory (/opt/WCG/bin) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

## Format

Each line in the cache.config file contains a caching rule. Content Gateway recognizes three space-delimited tags:

`primary_destination=value secondary_specifier=value action=value`

The following table lists the possible primary destinations and their allowed values.

<table>
<thead>
<tr>
<th>Primary Destination</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest_domain</td>
<td>A requested domain name</td>
</tr>
<tr>
<td>dest_host</td>
<td>A requested hostname</td>
</tr>
<tr>
<td>dest_ip</td>
<td>A requested IP address</td>
</tr>
<tr>
<td>url_regex</td>
<td>A regular expression to be found in a URL.</td>
</tr>
<tr>
<td></td>
<td>See <em>Specifying URL regular expressions (url_regex)</em> for information on using regular expressions.</td>
</tr>
</tbody>
</table>

Secondary specifiers are optional in the cache.config file. The following table lists the possible secondary specifiers and their allowed values.

**Note**

You can use more than one secondary specifier in a rule. However, you cannot repeat a secondary specifier.

<table>
<thead>
<tr>
<th>Secondary Specifier</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>port</td>
<td>A requested URL port</td>
</tr>
<tr>
<td>scheme</td>
<td>A request URL protocol; one of the following:</td>
</tr>
<tr>
<td></td>
<td>• HTTP</td>
</tr>
<tr>
<td></td>
<td>• FTP</td>
</tr>
<tr>
<td>prefix</td>
<td>A prefix in the path part of a URL</td>
</tr>
<tr>
<td>suffix</td>
<td>A file suffix in the URL</td>
</tr>
</tbody>
</table>
The following table lists the possible actions and their allowed values.

<table>
<thead>
<tr>
<th>Secondary Specifier</th>
<th>Allowed Value</th>
</tr>
</thead>
</table>
| method              | A request URL method; one of the following:  
|                     | • get  
|                     | • put  
|                     | • trace  
| time                | A time range, such as 08:00-14:00  
| src_ip              | A client IP address.  
| user_agent          | A request header User-Agent value.  
|                     | Takes a regular expression that is applied to the user-agent string. See *Specifying URL regular expressions (url_regex)* for information on using regular expressions.  

The following table lists the possible actions and their allowed values.

<table>
<thead>
<tr>
<th>Action</th>
<th>Value</th>
</tr>
</thead>
</table>
| action       | One of the following values:  
|              | • never-cache configures the proxy to never cache specified objects.  
|              | • ignore-no-cache configures the proxy to ignore all Cache-Control: no-cache headers.  
|              | • ignore-client-no-cache configures the proxy to ignore Cache-Control: no-cache headers from client requests.  
|              | • ignore-server-no-cache configures the proxy to ignore Cache-Control: no-cache headers from origin server responses.  
| pin-in-cache | The amount of time you want to keep the object(s) in the cache.  
|              | The following time formats are allowed:  
|              | • d for days (for example 2d)  
|              | • h for hours (for example, 10h)  
|              | • m for minutes (for example, 5m)  
|              | • s for seconds (for example, 20s)  
|              | • mixed units (for example, 1h15m20s)  
| revalidate   | The amount of time you want to consider the object(s) fresh. Use the same time formats as pin-in-cache.  
| ttl-in-cache | The amount of time you want to keep objects in the cache regardless of Cache-Control response headers. Use the same time formats as pin-in-cache and revalidate.  

**Examples**

The following example configures the proxy to never cache FTP documents requested from the IP address 112.12.12.12:
dest_ip=112.12.12.12 scheme=ftp action=never-cache

The following example configures the proxy to keep documents with URLs that contain the regular expression politics and the path prefix/viewpoint in the cache for 12 hours:

url_regex=politics prefix=/viewpoint pin-in-cache=12h

The following example configures the proxy to revalidate gif and jpeg objects in the domain mydomain.com every 6 hours and all other objects in mydomain.com every hour:

dest_domain=mydomain.com suffix=gif revalidate=6h
dest_domain=mydomain.com suffix=jpeg revalidate=6h
dest_domain=mydomain.com revalidate=1h

Note
The rules are applied in the order listed.

filter.config

Filtering rules stored in filter.config allow you to:

- Deny or allow URL requests
- Keep or strip header information from client requests
- Insert custom headers
- Allow specified applications or requests to specified web sites to bypass authentication
- Prevent specified applications from transiting the proxy

Filtering rules should be defined in the Content Gateway manager on the Configure > Security > Access Control > Filtering tab. See Creating filtering rules, page 184.

Important
After you modify the file, run content_line -x from the Content Gateway bin directory (/opt/WCG/bin) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

Three filtering rules are configured by default. The first denies traffic on port 25 to all destinations. The second and third bypass user authentication for connections to 2 Websense file sandbox destinations.
Format

Each line in filter.config is a filtering rule. Content Gateway applies the rules in the order listed, starting at the top of the file. If no rule matches, the request is allowed to proceed.

Content Gateway recognizes three space-delimited tags:

\[ \text{primary_destination}=\text{value} \quad \text{secondary_specifier}=\text{value} \quad \text{action}=\text{value} \]

The following table lists the possible primary destination types.

<table>
<thead>
<tr>
<th>Primary Destination Type</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest_domain</td>
<td>A requested domain name</td>
</tr>
<tr>
<td>dest_host</td>
<td>A requested hostname</td>
</tr>
<tr>
<td>dest_ip</td>
<td>A requested IP address</td>
</tr>
<tr>
<td>url_regex</td>
<td>A regular expression to be found in a URL. See Specifying URL regular expressions (url_regex) for information on using regular expressions.</td>
</tr>
</tbody>
</table>

Secondary specifiers are optional. The following table lists the possible secondary specifiers and their purpose.

<table>
<thead>
<tr>
<th>Secondary Specifier</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>A time range, such as 08:00-14:00</td>
</tr>
<tr>
<td>prefix</td>
<td>A prefix in the path part of a URL</td>
</tr>
<tr>
<td>suffix</td>
<td>A file suffix in the URL</td>
</tr>
<tr>
<td>src_ip</td>
<td>A single client IP address, or a client IP address range.</td>
</tr>
<tr>
<td>port</td>
<td>A requested URL port</td>
</tr>
<tr>
<td>method</td>
<td>A request URL method; one of the following:</td>
</tr>
<tr>
<td></td>
<td>• get</td>
</tr>
<tr>
<td></td>
<td>• post</td>
</tr>
<tr>
<td></td>
<td>• put</td>
</tr>
<tr>
<td></td>
<td>• trace</td>
</tr>
</tbody>
</table>
The following table lists the possible actions and their allowed values.

<table>
<thead>
<tr>
<th>Secondary Specifier</th>
<th>Allowed Value</th>
</tr>
</thead>
</table>
| scheme              | A request URL protocol. You can specify one of the following:  
|                     | • HTTP  
|                     | • HTTPS  
|                     | • FTP (for FTP over HTTP only) |
| user_agent          | A request header User-Agent value. Takes a regular expression that is applied to the user-agent string. See `Specifying URL regular expressions (url_regex)` for information on using regular expressions. |

The following example configures Content Gateway to deny all FTP document requests to the IP address 112.12.12.12:

```
dest_ip=112.12.12.12 scheme=ftp action=deny
```

The following example configures Content Gateway to keep the client IP address header for URL requests that contain the regular expression `politics` and whose path prefix is `/viewpoint`:

```
keep_hdr=client_ip strip_hdr=cookie add_hdr="header_name:header_value"
```

Examples

The following example configures Content Gateway to deny all FTP document requests to the IP address 112.12.12.12:

```
dest_ip=112.12.12.12 scheme=ftp action=deny
```

The following example configures Content Gateway to keep the client IP address header for URL requests that contain the regular expression `politics` and whose path prefix is `/viewpoint`:
url_regex=politics prefix=/viewpoint keep_hdr=client_ip

The following example configures Content Gateway to strip all cookies from client requests destined for the origin server **www.server1.com**:

```
dest_host=www.server1.com strip_hdr=cookie
```

The following example configures Content Gateway to disallow **puts** to the origin server **www.server2.com**:

```
dest_host=www.server2.com method=put action=deny
```

Content Gateway applies the rules in the order listed in the file. For example, the following sample **filter.config** file configures Content Gateway to do the following:

- Allow all users (except those trying to access internal.com) to access server1.com
- Deny all users access to notthatsite.com

```
dest_host=server1.com action=allow
dest_host=notthatsite.com action=deny
```

**hosting.config**

The **hosting.config** file lets you assign cache partitions to specific origin servers and domains so that you can manage your cache space more efficiently and restrict disk usage.

For step-by-step instructions on partitioning the cache according to origin servers and domains, see *Partitioning the cache according to origin server or domain*, page 102.

---

**Note**

Before you can assign cache partitions to specific origin servers and domains, you must partition your cache according to size and protocol in the **partition.config** file. For more about cache partitioning, see *Partitioning the cache*, page 102. For a description of the **partition.config** file, see *partition.config*, page 421.

---

After you modify the **hosting.config** file, run **content_line -x** from the Content Gateway **bin** directory to apply the changes. When you apply the changes to a node in a cluster, Content Gateway automatically applies the changes to all nodes in the cluster.

---

**Important**

The partition configuration must be the same on all nodes in a cluster.
Format

Each line in the `hosting.config` file must have one of the following formats:

```
hostname=hostname partition=partition_numbers
domain=domain_name partition=partition_numbers
```

where:

- **hostname** is the fully qualified hostname of the origin server whose content you want to store on a particular partition (for example, `www.myhost.com`).
- **domain_name** is the domain whose content you want to store on a particular partition (for example, `mydomain.com`).
- **partition_numbers** is a comma-separated list of the partitions on which you want to store the content that belongs to the origin server or domain listed. The partition numbers must be valid numbers listed in the `partition.config` file (see `partition.config`, page 421).

---

**Note**

If you want to allocate more than one partition to an origin server or domain, enter the partitions in a comma-separated list on one line. The `hosting.config` file cannot contain multiple entries for the same origin server or domain.

---

Generic Partition

When configuring the `hosting.config` file, you must assign a generic partition to use for content that does not belong to any of the origin servers or domains listed. If all partitions for a particular origin server become corrupt, Content Gateway uses the generic partition to store content for that origin server.

The generic partition must have the following format:

```
hostname=* partition=partition_numbers
```

where **partition_numbers** is a comma-separated list of generic partitions.

---

Examples

The following example configures the proxy to store content from the domain `mydomain.com` in partition 1 and content from `www.myhost.com` in partition 2. The proxy stores content from all origin servers in partitions 3 and 4.

```
domain=mydomain.com partition=1
hostname=www.myhost.com partition=2
hostname=* partition=3,4
```
**ip_allow.config**

The **ip_allow.config** file controls client access to the proxy. You can specify ranges of IP addresses that are allowed to use Content Gateway.

---

**Important**

After you modify the file, run `content_line -x` from the Content Gateway `bin` directory (`/opt/WCG/bin`) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

---

**Format**

Each line in the **ip_allow.config** file must have the following format:

```
src_ip=ipaddress action=ip_allow | ip_deny
```

where **ipaddress** is the IP address or range of IP addresses of the clients allowed to access the proxy.

The action **ip_allow** allows the specified clients to access the proxy.

The action **ip_deny** denies the specified clients to access the proxy.

By default, the **ip_allow.config** file contains the following line, which allows all clients to access the proxy. Comment out or delete this line before adding rules to restrict access.

```
src_ip=0.0.0.0-255.255.255.255 action=ip_allow
```

**Examples**

The following example allows all clients to access the proxy:

```
src_ip=0.0.0.0-255.255.255.255 action=ip_allow
```

The following example allows all clients on a specific subnet to access the proxy:

```
src_ip=123.12.3.000-123.12.3.123 action=ip_allow
```

The following example denies all clients on a specific subnet to access the proxy:

```
src_ip=123.45.6.0-123.45.6.123 action=ip_deny
```
Configuration Files

**ipnat.conf**

The **ipnat.conf** file contains redirection rules that specify how incoming packets are readdressed when the proxy is serving traffic transparently. Content Gateway creates the redirection rules during installation. You can modify these rules.

---

**Important**

After you modify this file, you must restart the proxy.

---

**Format**

Each line in the **ipnat.conf** file must have the following format:

```
rdr interface 0.0.0.0/0 port dest -> ipaddress port proxy
tcp|udp
```

where:

- `interface` is the Ethernet interface that traffic will use to access the Content Gateway machine (for example, `eth0` on Linux).
- `dest` is the traffic destination port (for example, `80` for HTTP traffic).
- `ipaddress` is the IP address of your Content Gateway server.
- `proxy` is the Content Gateway proxy port (usually `8080` for HTTP traffic).

**Examples**

The following example configures the ARM to readdress all incoming HTTP traffic to the Content Gateway IP address (111.111.11.1) on the Content Gateway proxy port 8080:

```
rdr hme0 0.0.0.0/0 port 80 -> 111.111.11.1 port 8080 tcp
```
To record HTTP/FTP transactions for different origin servers in separate log files, you must list each origin server’s hostname in the *log_hosts.config* file. In addition, you must enable the HTTP host splitting option (see *HTTP host log splitting*, page 256).

---

**Note**

It is recommended that you use the same *log_hosts.config* file on every Content Gateway node in your cluster.

---

**Important**

After you modify this file, run `content_line -x` from the Content Gateway `bin` directory (`/opt/WCG/bin`) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

---

**Format**

Each line in the *log_hosts.config* file has the following format:

```
hostname
```

where *hostname* is the hostname of the origin server.

---

**Note**

You can specify keywords in the *log_hosts.config* file to record all transactions from origin servers with the specified keyword in their names in a separate log file. See the example below.

---

**Examples**

The following example configures Content Gateway to create separate log files containing all HTTP/FTP transactions for the origin servers webserver1, webserver2, and webserver3.

```
webserver1
webserver2
webserver3
```

The following example records all HTTP and FTP transactions from origin servers that contain sports in their names (for example, `sports.yahoo.com` and...
www.foxsports.com) in a log file called **squid-sport.log** (the Squid format is enabled):

```
 sports
```

**logs_xml.config**

The **logs_xml.config** file defines the custom log file formats, filters, and processing options. The format of this file is modeled after XML, the Extensible Markup Language.

**Format**

The **logs_xml.config** file contains the following specifications:

- **LogFormat** specifies the fields to be gathered from each protocol event access. See *LogFormat*, page 411.
- **LogFilter** specifies the filters that are used to include or exclude certain entries being logged based on the value of a field within that entry. See *LogFilter*, page 412.
- **LogObject** specifies an object that contains a particular format, a local filename, filters, and collation servers. See *LogObject*, page 413.

---

**Note**

The **logs_xml.config** file ignores extra white space, blank lines, and all comments.
LogFormat

The following table lists the LogFormat specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;Name = &quot;valid_format_name&quot;/&gt;</code></td>
<td>Required. Valid format names include any name except squid, common, extended, or extended2, which are predefined formats. There is no default for this tag.</td>
</tr>
<tr>
<td><code>&lt;Format = &quot;valid_format_specification&quot;/&gt;</code></td>
<td>Required. A valid format specification is a printf-style string describing each log entry when formatted for ASCII output. Use '%&lt;field&gt;' as placeholders for valid field names. For more information, see Custom logging fields, page 383. The specified field can be of two types: Simple: for example, %&lt;cqu&gt; A field within a container, such as an HTTP header or a Content Gateway statistic. Fields of this type have the syntax: '%&lt;field&gt;container&gt;.'</td>
</tr>
<tr>
<td><code>&lt;Interval = &quot;aggregate_interval_secs&quot;/&gt;</code></td>
<td>Use this tag when the format contains aggregate operators. The value &quot;aggregate_interval_secs&quot; represents the number of seconds between individual aggregate values being produced. The valid set of aggregate operators are: • COUNT • SUM • AVG • FIRST • LAST</td>
</tr>
</tbody>
</table>
LogFilter

The following table lists the LogFilter specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Name = &quot;valid_filter_name&quot;/&gt;</td>
<td>Required. All filters must be uniquely named.</td>
</tr>
</tbody>
</table>
| <Condition = “valid_log_field valid_operator valid_comparison_value”/> | Required. This field contains the following elements:  
  valid_log_field - the field that will be compared against the given value. For more information, see LOGGING format cross-reference, page 386.  
  valid_operator_field - any one of the following: MATCH, CASE_INSENSITIVE_MATCH, CONTAIN, CASE_INSENSITIVE_CONTAIN. MATCH is true if the field and value are identical (case sensitive). CASE_INSENSITIVE_MATCH is similar to MATCH, only case insensitive. CONTAIN is true if the field contains the value (the value is a substring of the field). CASE_INSENSITIVE_CONTAIN is a case-insensitive version of CONTAIN.  
  valid_comparison_value - any string or integer matching the field type. For integer values, all of the operators are equivalent and mean that the field must be equal to the specified value. Note: There are no negative comparison operators. If you want to specify a negative condition, use the Action field to REJECT the record. |
| <Action = "valid_action_field"/> | Required. ACCEPT or REJECT. This instructs Content Gateway to either accept or reject records satisfying the condition of the filter. |
## LogObject

The following table lists the LogObject specifications.

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;Format = &quot;valid_format_name&quot;/&gt;</code></td>
<td>Required. Valid format names include the predefined logging formats: squid, common, extended, and extended2, as well as any previously-defined custom log formats. There is no default for this tag.</td>
</tr>
<tr>
<td><code>&lt;Filename = &quot;file_name&quot;/&gt;</code></td>
<td>Required. The filename to which the given log file is written on the local file system or on a remote collation server. No local log file will be created if you fail to specify this tag. All filenames are relative to the default logging directory. If the name does not contain an extension (for example, squid), the extension <code>.log</code> is automatically appended to it for ASCII logs and <code>.blog</code> for binary logs. (See <code>&lt;Mode = &quot;valid_logging_mode&quot;/&gt;</code> below.) If you do not want an extension to be added, end the filename with a single dot (<code>.</code>): for example, squid.</td>
</tr>
</tbody>
</table>
Websense Content Gateway

Valid logging modes include ascii, binary, and ascii_pipe. The default is ascii.

Use ascii to create event log files in human-readable form (plain ASCII).

Use binary to create event log files in binary format. Binary log files generate lower system overhead and occupy less space on the disk (depending on the information being logged). You must use the logcat utility to translate binary log files to ASCII format before you can read them.

Use ascii_pipe to write log entries to a UNIX named pipe (a buffer in memory). Other processes can then read the data using standard I/O functions. Content Gateway does not have to write to disk, freeing disk space and bandwidth for other tasks. In addition, writing to a pipe does not stop when logging space is exhausted because the pipe does not use disk space.

Note: If you are using a collation server, the log is written to a pipe on the collation server. A local pipe is created even before a transaction is processed so that you can see the pipe right after Content Gateway starts. However, pipes on a collation server should not stop when logging space is exhausted because the pipe does not use disk space.

### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;Mode = &quot;valid_logging_mode&quot;/&gt;</code></td>
<td>Valid logging modes include ascii, binary, and ascii_pipe. The default is ascii. Use ascii to create event log files in human-readable form (plain ASCII). Use binary to create event log files in binary format. Binary log files generate lower system overhead and occupy less space on the disk (depending on the information being logged). You must use the logcat utility to translate binary log files to ASCII format before you can read them. Use ascii_pipe to write log entries to a UNIX named pipe (a buffer in memory). Other processes can then read the data using standard I/O functions. Content Gateway does not have to write to disk, freeing disk space and bandwidth for other tasks. In addition, writing to a pipe does not stop when logging space is exhausted because the pipe does not use disk space. Note: If you are using a collation server, the log is written to a pipe on the collation server. A local pipe is created even before a transaction is processed so that you can see the pipe right after Content Gateway starts. However, pipes on a collation server should not stop when logging space is exhausted because the pipe does not use disk space.</td>
</tr>
<tr>
<td><code>&lt;Filters = &quot;list_of_valid_filter_names&quot;/&gt;</code></td>
<td>A comma-separated list of names of any previously defined log filters. If more than one filter is specified, all filters must accept a record for the record to be logged.</td>
</tr>
<tr>
<td><code>&lt;Protocols = &quot;list_of_valid_protocols&quot;/&gt;</code></td>
<td>A comma-separated list of the protocols this object should log. Valid protocol names include HTTP.</td>
</tr>
<tr>
<td><code>&lt;ServerHosts = &quot;list_of_valid_servers&quot;/&gt;</code></td>
<td>A comma-separated list of valid hostnames. This tag indicates that only entries from the named servers will be included in the file.</td>
</tr>
<tr>
<td><code>&lt;CollationHosts = &quot;list_of_valid_hostnames&quot;/&gt;</code></td>
<td>A comma-separated list of collation servers to which all log entries (for this object) are forwarded. Collation servers can be specified by name or IP address. Specify the collation port with a colon after the name (for example, host:port).</td>
</tr>
</tbody>
</table>
### Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>&lt;Header = &quot;header&quot;/&gt;</code></td>
<td>The header text you want the log files to contain. The header text appears at the beginning of the log file, just before the first record.</td>
</tr>
<tr>
<td><code>&lt;RollingEnabled = &quot;truth value&quot;/&gt;</code></td>
<td>Enables or disables log file rolling for the LogObject. This setting overrides the value for the configuration setting Log Rolling: Enabled/Disabled in the Content Gateway manager or proxy.config.log2.rolling_enabled in the records.config file. Set “truth value” to 1 or true to enable rolling; set it to 0 or false to disable rolling for this particular LogObject.</td>
</tr>
<tr>
<td><code>&lt;RollingIntervalSec = &quot;seconds&quot;/&gt;</code></td>
<td>Specifies the seconds between log file rolling for the LogObject. This setting overrides the value for the configuration setting Log Rolling: Interval in the Content Gateway manager or proxy.config.log2.rolling_interval_sec in the records.config file. This option allows you to specify different rolling intervals for different LogObjects.</td>
</tr>
<tr>
<td><code>&lt;RollingOffsetHr = &quot;hour&quot;/&gt;</code></td>
<td>Specifies an hour (from 0 to 23) at which rolling is guaranteed to &quot;align&quot;. Rolling may start before then, but a rolled file will be produced only at that time. The impact of this setting is only noticeable if the rolling interval is larger than one hour. This setting overrides the configuration setting Log Rolling: Offset Hour in the Content Gateway manager or proxy.config.log2.rolling_offset_hr in the records.config file.</td>
</tr>
</tbody>
</table>

### Examples

The following is an example of a LogFormat specification collecting information using three common fields:

```
<LogFormat>
 <Name = "minimal"/>
 <Format = "%<chi> : %<cqu> : %<pssc>"/>
</LogFormat>
```
The following is an example of a LogFormat specification using aggregate operators:

```xml
<LogFormat>
 <Name = "summary"/>
 <Format = "%<LAST(cqts)> : %<COUNT(*)> : %<SUM(psql)>"/>
 <Interval = "10"/>
</LogFormat>
```

The following is an example of a LogFilter that will cause only REFRESH_HIT entries to be logged:

```xml
<LogFilter>
 <Name = "only_refresh_hits"/>
 <Action = "ACCEPT"/>
 <Condition = "%<pssc> MATCH REFRESH_HIT"/>
</LogFilter>
```

**Note**

When specifying the field in the filter condition, you can omit the %<> This means that the following filter is equivalent to the example directly above:

```xml
<LogFilter>
 <Name = "only_refresh_hits"/>
 <Action = "ACCEPT"/>
 <Condition = "pssc MATCH REFRESH_HIT"/>
</LogFilter>
```

The following is an example of a LogObject specification that creates a local log file for the minimal format defined earlier. The log filename will be minimal.log because this is an ASCII log file (the default).

```xml
<LogObject>
 <Format = "minimal"/>
 <Filename = "minimal"/>
</LogObject>
```

The following is an example of a LogObject specification that includes only HTTP requests served by hosts in the domain company.com or by the specific server server.somewhere.com. Log entries are sent to port 4000 of the collation host logs.company.com and to port 5000 of the collation host 209.131.52.129.

```xml
<LogObject>
 <Format = "minimal"/>
 <Filename = "minimal"/>
 <ServerHosts = "company.com,server.somewhere.com"/>
 <Protocols = "http"/>
</LogObject>
```
<CollationHosts =
  "logs.company.com:4000,209.131.52.129:5000"/>
</LogObject>

**WELF (WebTrends Enhanced Log Format)**

Content Gateway supports WELF, the WebTrends Enhanced Log Format, so that you can analyze Content Gateway log files with WebTrends reporting tools. A predefined `<LogFormat>` that is compatible with WELF is provided at the end of the logs.config file (shown below). To create a WELF format log file, create a `<LogObject>` that uses this predefined format.

```
<LogFormat>
 <Name = "welf"/>
 <Format = "id=firewall time="%<cqtd> %<cqtt>" fw=%<phn>
 pri=6 proto=%<cqus> duration=%<ttmsf> sent=%<psql>
 rcvd=%<cqhl> src=%<chi> dst=%<shi> dstname=%<shn>
 user=%<caun> op=%<cqhm> arg="%<cqup>" result=%<pssc>
 ref=""%<{Referer}cqh>" agent=""%<{user-agent}cqh>" cache=%<crc>"/>
</LogFormat>
```

**mgmt_allow.config**

The `mgmt_allow.config` file specifies the IP addresses of remote hosts allowed access or denied access to the Content Gateway manager.

---

**Important**

After you modify this file, run `content_line -x` from the Content Gateway `bin` directory (`/opt/WCG/bin`) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

---

**Format**

Each line in the `mgmt_allow.config` file has the following format:

```
src_ip=ipaddress action=ip_allow|ip_deny
```

where `ipaddress` is the IP address or range of IP addresses allowed to access the Content Gateway manager.

`action` must specify either `ip_allow` to allow access to the Content Gateway manager, or `ip_deny` to deny access.
By default, the `mgmt_allow.config` file contains the following line, which allows all remote hosts to access the Content Gateway manager. Comment out or delete this line before adding rules to restrict access.

```
src_ip=0.0.0.0-255.255.255.255 action=ip_allow
```

**Examples**

The following example configures Content Gateway to allow only one user to access the Content Gateway manager:

```
src_ip=123.12.3.123 action=ip_allow
```

The following example configures Content Gateway to allow a range of IP addresses to access the Content Gateway manager:

```
src_ip=123.12.3.000-123.12.3.123 action=ip_allow
```

The following example configures Content Gateway to deny the IP address 123.45.67.8 access to the Content Gateway manager:

```
src_ip=123.45.67.8 action=ip_deny
```

**parent.config**

The `parent.config` file identifies the HTTP parent proxies used in an HTTP cache hierarchy. Use this file to perform the following configuration:

- Set up parent cache hierarchies, with multiple parents and parent failover
- Configure selected URL requests to bypass parent proxies

Rules are applied from the list top-down; the first match is applied. Bypass rules are usually placed above parent proxy designation rule(s).

Content Gateway uses the `parent.config` file only when the HTTP parent caching option is enabled. See *Configuring Content Gateway to use an HTTP parent cache*, page 96.

**Important**

After you modify this file, run `content_line -x` from the Content Gateway bin directory (`/opt/WCG/bin`) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.
Format

Each line in the **parent.config** file must contain a parent caching rule. Content Gateway recognizes three space-delimited tags:

```
primary_destination=value secondary_specifier=value
action=value
```

The following table lists the possible primary destinations and their allowed values.

<table>
<thead>
<tr>
<th>Primary Destination</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest_domain</td>
<td>A requested domain name</td>
</tr>
<tr>
<td>dest_host</td>
<td>A requested hostname</td>
</tr>
<tr>
<td>dest_ip</td>
<td>A requested IP address or range of IP addresses separated by a dash (-).</td>
</tr>
<tr>
<td>url_regex</td>
<td>A regular expression to be found in a URL. See <em>Specifying URL regular expressions (url_regex)</em> for information on using regular expressions.</td>
</tr>
</tbody>
</table>

Secondary specifiers are optional in the *parent.config* file. The following table lists the possible secondary specifiers and their allowed values.

<table>
<thead>
<tr>
<th>Secondary Specifier</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>A time range, such as 08:00-14:00, during which the parent cache is used to serve requests</td>
</tr>
<tr>
<td>prefix</td>
<td>A prefix in the path part of a URL</td>
</tr>
<tr>
<td>suffix</td>
<td>A file suffix in the URL</td>
</tr>
<tr>
<td>src_ip</td>
<td>A client IP address.</td>
</tr>
<tr>
<td>port</td>
<td>A requested URL port</td>
</tr>
</tbody>
</table>
| scheme              | A request URL protocol; one of the following:  
  • HTTP  
  • FTP |
| method              | A request URL method; one of the following:  
  • get  
  • post  
  • put  
  • trace |
| user_agent          | A request header User-Agent value. Takes a regular expression that is applied to the user-agent string. See *Specifying URL regular expressions (url_regex)* for information on using regular expressions. |
The following table lists the possible actions and their allowed values.

<table>
<thead>
<tr>
<th>Action</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>parent</td>
<td>An ordered list of parent servers. If the request cannot be handled by the last parent server in the list, it will be routed to the origin server. You can specify either a hostname or an IP address. You must specify the port number.</td>
</tr>
<tr>
<td>round_robin</td>
<td>One of the following values:</td>
</tr>
<tr>
<td></td>
<td>• true - Content Gateway goes through the parent cache list in a round-robin based on client IP address.</td>
</tr>
<tr>
<td></td>
<td>• strict - Content Gateway machines serve requests strictly in turn. For example, machine proxy1 serves the first request, proxy2 serves the second request, and so on.</td>
</tr>
<tr>
<td></td>
<td>• false - round-robin selection does not occur.</td>
</tr>
<tr>
<td>go_direct</td>
<td>One of the following values:</td>
</tr>
<tr>
<td></td>
<td>• true - requests bypass parent hierarchies and go directly to the origin server.</td>
</tr>
<tr>
<td></td>
<td>• false - requests do not bypass parent hierarchies.</td>
</tr>
</tbody>
</table>

**Examples**

The following rule configures a parent cache hierarchy consisting of Content Gateway (which is the child) and two parents, p1.x.com and p2.x.com. The proxy forwards the requests it cannot serve to the parent servers p1.x.com and p2.x.com in a round-robin fashion because \textit{round\_robin=true}.

```
dest_domain=.\ method=get\ parent="p1.x.com:8080; p2.y.com:8080" \textit{round_robin=true}
```

The following rule configures Content Gateway to route all requests containing the regular expression \textit{politics} and the path /viewpoint directly to the origin server (bypassing any parent hierarchies):

```
url_regex=politics prefix=/viewpoint \textit{go_direct=true}
```

The following rule is a typical destination bypass rule:

```
dest_domain=example.com \textit{go_direct=true}
```

**Important**

Every line in the \textit{parent.config} file must contain either \textit{parent=} or \textit{go\_direct=} directive.

A bypass rule that includes \textit{parent=} \textit{and} \textit{go\_direct=true}, causes the specified \textit{dest\_domain} to be sent to the parent while all other domains are bypassed (the opposite of the usual intended action).
The `partition.config` file lets you manage your cache space more efficiently by creating cache partitions of different sizes. You can further configure these partitions to store data from certain origin servers and domains in the `hosting.config` file. This allows you to take better advantage of caching of frequently visited sites where the content changes infrequently.

You must stop Content Gateway before you change the cache partition size.

**Format**

For each partition you want to create, enter a line with the following format:

```
partition=partition_number scheme=protocol_type
size=partition_size
```

where:

- `partition_number` is a number between 1 and 255 (the maximum number of partitions is 255).
- `protocol_type` is `http`.
- `partition_size` is the amount of cache space allocated to the partition. This value can be either a percentage of the total cache space or an absolute value. The absolute value must be a multiple of 128 MB, where 128 MB is the smallest value. If you specify a percentage, the size is rounded down to the closest multiple of 128 MB. Each partition is striped across several disks to achieve parallel I/O. For example, if there are four disks, a 1 GB partition will have 256 MB on each disk (assuming each disk has enough free space available).

**Important**

The partition configuration must be the same on all nodes in a cluster.

**Note**

Only HTTP is supported at this time. Streaming media content—`mixt`—is not supported.

**Note**

If you do not allocate all the disk space in the cache, the extra disk space is not used. You can use the extra space later to create new partitions without deleting and clearing the existing partitions.
Examples

The following example partitions the cache evenly:

```
partition=1 scheme=http size=50%
partition=2 scheme=http size=50%
```

records.config

The `records.config` file is a list of configurable variables used by Content Gateway. Most values are set using controls in the Content Gateway manager. Some options can be set only by editing variables in the `records.config` file.

**Warning**

Do not change the `records.config` variables unless you are certain of the effect. Many variables are coupled, meaning that they interact with other variables. Changing a single variable in isolation can cause Content Gateway to fail. **Whenever possible, use the Content Gateway manager to configure Content Gateway.**

**Important**

After you modify this file, to apply the changes run `content_line -x` from the Content Gateway `bin` directory (`/opt/WCG/bin`).

When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

Format

Each variable has the following format:

```
CONFIG variable_name DATATYPE variable_value
```

where `DATATYPE` is INT (an integer), STRING (a string), or FLOAT (a floating point).

Examples

In the following example, the variable `proxy.config.proxy_name` is of datatype `string` and its value is `contentserver1`. This means that the name of the Content Gateway proxy is `contentserver1`. 
In the following example, the variable `proxy.config.winauth.enabled` is a yes/no flag. A value of 0 (zero) disables the option. A value of 1 enables the option.

```
CONFIG proxy.config.winauth.enabled INT 0
```

In the following example, the variable sets the cluster startup timeout to 10 seconds.

```
CONFIG proxy.config.cluster.startup_timeout INT 10
```

## Configuration variables

The following tables describe the configuration variables listed in the `records.config` file.

- **System variables**
- **Local manager**
- **Virtual IP manager**
- **Alarm configuration**
- **ARM**
- **Load shedding configuration (ARM)**
- **Authentication basic realm**
- **LDAP**
- **RADIUS authentication**
- **NTLM**
- **Integrated Windows Authentication**
- **Transparent authentication**
- **HTTP engine**
- **Parent proxy configuration**
- **Cache control**
- **Heuristic expiration**
- **Dynamic content and content negotiation**
- **Anonymous FTP password**
- **Cached FTP document lifetime**
- **FTP transfer mode**
- **FTP engine**
**Customizable user response pages**

**SOCKS processor**

**Net subsystem**

**Cluster subsystem**

**Cache**

**DNS**

**DNS proxy**

**HostDB**

**Logging configuration**

**URL remap rules**

**Scheduled update configuration**

**WCCP configuration**

**SSL Decryption**

**ICAP**

**Connectivity, analysis, and boundary conditions**

---

### System variables

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.proxy_name</td>
<td>STRING</td>
<td></td>
<td>Specifies the name of the Content Gateway node.</td>
</tr>
<tr>
<td>proxy.config.bin_path</td>
<td>STRING</td>
<td>bin</td>
<td>Specifies the location of the Content Gateway bin directory. This is the directory in which the Content Gateway binary files are placed by the installer.</td>
</tr>
<tr>
<td>proxy.config.proxy_binary</td>
<td>STRING</td>
<td>content_gateway</td>
<td>Specifies the name of the executable that runs the content_gateway process.</td>
</tr>
<tr>
<td>proxy.config.proxy_binary_opts</td>
<td>STRING</td>
<td>-M</td>
<td>Specifies the command-line options for starting content_gateway.</td>
</tr>
<tr>
<td>proxy.config.manager_binary</td>
<td>STRING</td>
<td>content_manager</td>
<td>Specifies the name of the executable that runs the content_manager process.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>proxy.config.cli_binary</td>
<td>STRING</td>
<td>content_line</td>
<td>Specifies the name of the executable that runs the content_line interface.</td>
</tr>
<tr>
<td>proxy.config.watch_script</td>
<td>STRING</td>
<td>content_cop</td>
<td>Specifies the name of the executable that runs the content_cop process.</td>
</tr>
<tr>
<td>proxy.config.env_prep</td>
<td>STRING</td>
<td>example_prep.sh</td>
<td>Specifies the script that is executed before the content_manager process spawns the content_gateway process.</td>
</tr>
<tr>
<td>proxy.config.config_dir</td>
<td>STRING</td>
<td>config</td>
<td>Specifies the directory, relative to bin_path (above), that contains the Content Gateway configuration files.</td>
</tr>
<tr>
<td>proxy.config.temp_dir</td>
<td>STRING</td>
<td>/tmp</td>
<td>Specifies the directory used for Content Gateway temporary files</td>
</tr>
<tr>
<td>proxy.config.alarm_email</td>
<td>STRING</td>
<td>websense</td>
<td>Specifies the email address to which Content Gateway sends alarm messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>During installation, you can specify the email address; otherwise, Content Gateway uses the Content Gateway user account name as the default value.</td>
</tr>
<tr>
<td>proxy.config.syslog_facility</td>
<td>STRING</td>
<td>LOG_DAEMON</td>
<td>Specifies the facility used to record system log files. See Working With Log Files, page 243.</td>
</tr>
<tr>
<td>proxy.config.cop.core_signal</td>
<td>INT</td>
<td>3</td>
<td>Specifies the signal sent by content_cop to its managed processes – content_manager and content_gateway – to stop them. Note: Do not change the value of this variable.</td>
</tr>
<tr>
<td>proxy.config.cop.sleep_time</td>
<td>INT</td>
<td>45</td>
<td>Specifies the interval, in seconds, between heartbeat tests performed by content_cop to test the health of the content_manager and content_gateway processes. Note: Do not change the value of this variable.</td>
</tr>
<tr>
<td>proxy.config.cop.linux_min_swapfree_kb</td>
<td>INT</td>
<td>10240</td>
<td>This variable is not used.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.cop.linux_min_memfree_kb</td>
<td>INT</td>
<td>10240</td>
<td>This variable is not used.</td>
</tr>
<tr>
<td>proxy.config.output.logfile</td>
<td>STRING</td>
<td>content_gateway.out</td>
<td>Specifies the name and location of the file that contains warnings, status messages, and error messages produced by the Content Gateway processes. If no path is specified, Content Gateway creates the file in its logging directory.</td>
</tr>
<tr>
<td>proxy.config.output.logfile.log_dir_usage_percent</td>
<td>INT</td>
<td>35</td>
<td>Specifies the percentage of space allocated by <code>proxy.config.log2.max_space_mb_for_logs</code>, that can be used for logs in /opt/WCG/logs/ except for <code>content_gateway.out</code>. <code>content_gateway.out</code> can use up to the log directory limit.</td>
</tr>
<tr>
<td>proxy.config.snapshot_dir</td>
<td>STRING</td>
<td>snapshots</td>
<td>Specifies the directory in which Content Gateway stores configuration snapshots on the local system. Unless you specify an absolute path, this directory is located in the Content Gateway config directory.</td>
</tr>
<tr>
<td>proxy.config.attach_debugger_script</td>
<td>STRING</td>
<td>NULL</td>
<td>This variable should be used only on the direction of Websense Technical Support. If set, when the content_gateway process resets, a debug script (in /opt/WCG/bin) is run.</td>
</tr>
<tr>
<td>proxy.config.healthcheck_force_offline</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), forces URL health checks to report proxy down. See, Health Check URLs, page 380.</td>
</tr>
</tbody>
</table>
## Local manager

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.lm.sem_id</td>
<td>INT</td>
<td>11452</td>
<td>Specifies the semaphore ID for the local manager. <strong>Note: Do not change the value of this variable.</strong></td>
</tr>
</tbody>
</table>
| proxy.local.cluster.type               | INT        | 3             | Sets the clustering mode:  
  - 2 = management-only mode  
  - 3 = no clustering                                                             |
<p>| proxy.config.cluster.rsport            | INT        | 8087          | Specifies the reliable service port. The reliable service port is used to send configuration information between the nodes in a cluster. All nodes in a cluster must use the same reliable service port. |
| proxy.config.cluster.mcport            | INT        | 8088          | Specifies the multicast port. The multicast port is used for node identification. All nodes in a cluster must use the same multicast port.  |
| proxy.config.cluster.mc_group_addr     | STRING     | 224.0.1.37    | Specifies the multicast address for cluster communications. All nodes in a cluster must use the same multicast address.                   |
| proxy.config.cluster.mc_ttl            | INT        | 1             | Specifies the multicast Time-To-Live for cluster communications.                                                                          |
| proxy.config.cluster.log_bogus_mc_msgs | INT        | 1             | Enables (1) or disables (0) logging of invalid multicast messages.                                                                         |
| proxy.config.admin.html_doc_root       | STRING     | ui            | Specifies the document root for the Content Gateway manager.                                                                            |
| proxy.config.admin.web_interface_port  | INT        | 8081          | Specifies the Content Gateway manager port.                                                                                            |
| proxy.config.admin.autoconf_port       | INT        | 8083          | Specifies the autoconfiguration port.                                                                                                      |
| proxy.config.admin.overseer_port       | INT        | -1            | Specifies the port used for retrieving and setting statistics and configuration variables. This port is disabled by default.            |
| proxy.config.admin.admin_user          | STRING     | admin         | Specifies the administrator ID that controls access to the Content Gateway manager.                                                        |</p>
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.admin.admin_password</td>
<td>STRING</td>
<td></td>
<td>Specifies the encrypted administrator password that controls access to the Content Gateway manager. You cannot edit the password; however, you can specify a value of NULL to clear the password. See Accessing the Content Gateway manager if you forget the master administrator password, page 15.</td>
</tr>
<tr>
<td>proxy.config.admin.use_ssl</td>
<td>INT</td>
<td>1</td>
<td>Enables the Content Gateway manager SSL option for secure communication between a remote host and the Content Gateway manager.</td>
</tr>
<tr>
<td>proxy.config.admin.ssl_cert_file</td>
<td>STRING</td>
<td>server.pem</td>
<td>Specifies the filename of the SSL certificate installed on the Content Gateway system for secure communication between a remote host and the Content Gateway manager.</td>
</tr>
<tr>
<td>proxy.config.admin.number_config_bak</td>
<td>INT</td>
<td>3</td>
<td>Specifies the maximum number of copies of rolled configuration files to keep.</td>
</tr>
<tr>
<td>proxy.config.admin.user_id</td>
<td>STRING</td>
<td>root</td>
<td>Specifies the non-privileged user account designated to Content Gateway.</td>
</tr>
<tr>
<td>proxy.config.admin.ui_refresh_rate</td>
<td>INT</td>
<td>30</td>
<td>Specifies the refresh rate for the display of statistics in the Monitor pages of the Content Gateway manager.</td>
</tr>
<tr>
<td>proxy.config.admin.log_mgmt_access</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) logging of all Content Gateway manager transactions to the lm.log file.</td>
</tr>
<tr>
<td>proxy.config.admin.log_resolve_hostname</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), the hostname of the client connecting to the Content Gateway manager is recorded in the lm.log file. When disabled (0), the IP address of the client connecting to the Content Gateway manager is recorded in the lm.log file.</td>
</tr>
<tr>
<td>proxy.config.admin.subscription</td>
<td>STRING</td>
<td>NULL</td>
<td>Not used.</td>
</tr>
</tbody>
</table>
### Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.admin.supported_cipher_list</td>
<td>STRING</td>
<td>AES128-SHA, DHE-RSA-AES128-SHA, DHE-DSS-AES128-SHA, DES-CBC3-SHA, EDH-RSA-DES-CBC3-SHA, EDH-DSS-DES-CBC3-SHA</td>
<td>A comma-separated list, no spaces, of ciphers supported by Content Gateway. No validation is performed on the string.</td>
</tr>
<tr>
<td>proxy.config.lm.display_reset_alarm</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), email is sent to the administrator (proxy.config.alarm_email) whenever Content Gateway resets. Default is 0.</td>
</tr>
<tr>
<td>proxy.local.install.type</td>
<td>INT</td>
<td>1</td>
<td>Indicates that Content Gateway is installed as a component of TRITON AP-WEB (1) or TRITON AP-DATA without TRITON AP-WEB (2)</td>
</tr>
</tbody>
</table>

### Process manager

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.process_manager.mgmt_port</td>
<td>INT</td>
<td>8084</td>
<td>Specifies the port used for internal communication between the content_manager process and the content_gateway process.</td>
</tr>
</tbody>
</table>

### Virtual IP manager

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.vmap.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the virtual IP option.</td>
</tr>
</tbody>
</table>
## Alarm configuration

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.alarm.bin</td>
<td>STRING</td>
<td>example_alarm_bin.sh</td>
<td>Specifies the name of the script file that can execute certain actions when an alarm is signaled. The default file is a sample script named example_alarm_bin.sh located in the bin directory. You must edit the script to suit your needs.</td>
</tr>
<tr>
<td>proxy.config.alarm.abs_path</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the full path to the script file specified by proxy.config.alarm.bin (prior entry).</td>
</tr>
</tbody>
</table>

## ARM

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.arm.enabled</td>
<td>INT</td>
<td>1</td>
<td>Specifies that the ARM is enabled or disabled. Warning: Do not disable the ARM. In all deployments, it must be running to support proper proxy function.</td>
</tr>
<tr>
<td>proxy.config.arm.ignore_ifp</td>
<td>INT</td>
<td>1</td>
<td>When NAT rules are applied, configures Content Gateway to use any available interface when sending packets back to the client, rather than the one that triggered the NAT rule.</td>
</tr>
</tbody>
</table>
### Configuration Variable Data

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.arm.always_query_dest</code></td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway always asks the ARM for the original destination IP address of incoming requests. This is done instead of doing a DNS lookup on the hostname of the request. When enabled, domain names are logged, instead of IP addresses, unless <code>proxy.config.arm.use_hostname_for_wisp_and_reporting</code> is disabled. When disabled, domain names are logged. See <em>[Reducing DNS lookups, page 74]</em> for additional information. It is recommended that you do not enable this variable if Content Gateway is running in both explicit proxy and transparent proxy modes. In explicit proxy mode, the client does not perform a DNS lookup on the hostname of the origin server, so Content Gateway must do it.</td>
</tr>
<tr>
<td><code>proxy.config.arm.use_hostname_for_wisp_and_reporting</code></td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) the ability to capture hostname (instead of IP address) when Always Query Destination is enabled for transparent proxy deployments. See preceding entry. Note: This variable must be manually added to the config file.</td>
</tr>
<tr>
<td><code>proxy.config.http.outgoing_ip_spoofing_enabled</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the IP spoofing option that allows Content Gateway to establish connections to origin servers with the client IP address instead of the Content Gateway IP address. See <em>[IP spoofing, page 77]</em>.</td>
</tr>
<tr>
<td><code>proxy.config.arm.bypass_dynamic_enabled</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the adaptive bypass option to bypass the proxy and go directly to the origin server when clients or servers cause problems. See <em>[Dynamic bypass rules, page 71]</em>.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic source/destination bypass in the event of non-HTTP traffic on port 80. Note: The variable <code>proxy.config.arm.bypass_on_bad_client_request</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>use_and_rules_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bad_client_request</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proxy.config.arm.bypass_</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 400 error. Note: The variable <code>proxy.config.arm.bypass_on_400</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>use_and_rules_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proxy.config.arm.bypass_</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 401 error. Note: The variable <code>proxy.config.arm.bypass_on_401</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>use_and_rules_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>401</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proxy.config.arm.bypass_</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 403 error. Note: The variable <code>proxy.config.arm.bypass_on_403</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>use_and_rules_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proxy.config.arm.bypass_</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 405 error. Note: The variable <code>proxy.config.arm.bypass_on_405</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>use_and_rules_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>405</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>proxy.config.arm.bypass_</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 406 error. Note: The variable <code>proxy.config.arm.bypass_on_406</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>use_and_rules_</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>406</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Configuration Variables

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.arm.bypass_use_and_rules_408</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 408 error. Note: The variable <code>proxy.config.arm.bypass_on_408</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_use_and_rules_500</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of source/destination bypass rules when an origin server returns a 500 error. Note: The variable <code>proxy.config.arm.bypass_on_500</code> must also be enabled for this option to work.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_bad_client_request</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic destination bypass in the event of non-HTTP traffic on port 80.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_400</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 400 error.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_401</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 401 error.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_403</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 403 error.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_405</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 405 error.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_406</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 406 error.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_408</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 408 error.</td>
</tr>
<tr>
<td>proxy.config.arm.bypass_on_500</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) dynamic generation of destination bypass rules when an origin server returns a 500 error.</td>
</tr>
</tbody>
</table>
## Load shedding configuration (ARM)

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.arm.loadshedding.max_connections</td>
<td>INT</td>
<td>1000000</td>
<td>Specifies the maximum number of client connections allowed before the proxy starts forwarding incoming requests directly to the origin server.</td>
</tr>
<tr>
<td>proxy.config.http.client.connection_control.close.enabled</td>
<td>INT</td>
<td>1</td>
<td>Disables (0) or enables (1) the ability to limit the number of connections from a single computer.</td>
</tr>
<tr>
<td>proxy.config.http.client.concurrent_connection_control.close.enabled</td>
<td>INT</td>
<td>1</td>
<td>Disables (0) or enables (1) closing connections on reaching the concurrent connection limit.</td>
</tr>
<tr>
<td>proxy.config.http.client.concurrent_connection_control.alert.enabled</td>
<td>INT</td>
<td>0</td>
<td>Disables (0) or enables (1) alerting on violation of the concurrent connection limit.</td>
</tr>
<tr>
<td>proxy.config.http.client.concurrent_connection_control.max_connections</td>
<td>INT</td>
<td>1000</td>
<td>Configures the maximum number of concurrent connections allowed from one client IP address.</td>
</tr>
<tr>
<td>proxy.config.http.client.connection_rate_control.close.enabled</td>
<td>INT</td>
<td>0</td>
<td>Disables (0) or enables (1) closing connections on reaching the connection rate limit.</td>
</tr>
<tr>
<td>proxy.config.http.client.connection_rate_control.alert.enabled</td>
<td>INT</td>
<td>1</td>
<td>Disables (0) or enables (1) alerting on exceeding the connection rate limit.</td>
</tr>
<tr>
<td>proxy.config.http.client.connection_rate_control.second</td>
<td>INT</td>
<td>100</td>
<td>Configures the maximum connections per second allowed from one client IP.</td>
</tr>
<tr>
<td>proxy.config.http.client.connection_control.exceptions</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies a comma separated list of IP addresses for which the connection limits do not apply.</td>
</tr>
</tbody>
</table>
## Authentication basic realm

> Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.proxy.authenticate.basic.realm</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the authentication realm name. If the default of NULL is specified, Content Gateway is used.</td>
</tr>
<tr>
<td>proxy.config.auth_type</td>
<td>INT</td>
<td>0</td>
<td>Specifies the type of client authentication.</td>
</tr>
<tr>
<td>proxy.config.multiauth.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) rule-based authentication. Tells Content Gateway to use the auth_rules.config file.</td>
</tr>
<tr>
<td>proxy.config.multiauth.domain.max</td>
<td>INT</td>
<td>50</td>
<td>Specifies the maximum number of domains that can be added or joined on Configure &gt; Security &gt; Access Control &gt; Domains</td>
</tr>
<tr>
<td>proxy.config.auth.form_filename</td>
<td>STRING</td>
<td>auth_form.html</td>
<td>Specifies the file that defines the Captive Portal authentication page. This variable must be added manually. Changing this filename is not recommended.</td>
</tr>
<tr>
<td>proxy.config.internal.file.path</td>
<td>STRING</td>
<td>/opt/WCG/config/ui_files</td>
<td>Specifies the location of any css and image files used to define the Captive Portal authentication page. The full default path is /opt/WCG/config/ui_files. Image files are located in an /images sub-directory. This variable must be added manually.</td>
</tr>
<tr>
<td>proxy.config.ssl.auth_server_port</td>
<td>INT</td>
<td>4443</td>
<td>Specifies the local port used for the HTTPS Captive Portal page.</td>
</tr>
</tbody>
</table>

### LDAP
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.ldap.auth.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) LDAP proxy authentication. See <em>LDAP authentication</em>, page 207.</td>
</tr>
<tr>
<td>proxy.config.ldap.cache.size</td>
<td>INT</td>
<td>5000</td>
<td>Specifies the maximum number of entries allowed in the LDAP cache. If this value is modified, you must update the value of proxy.config.ldap.cache.storage_size proportionally. For example, if you double the cache size, also double the cache storage size.</td>
</tr>
<tr>
<td>proxy.config.ldap.cache.storage_size</td>
<td>INT</td>
<td>24582912</td>
<td>Specifies the size of the LDAP cache in bytes. This is directly related to the number of entries in the cache. If this value is modified, you must update the value of proxy.config.ldap.cache.size proportionally. For example, if you double the storage size, also double the cache size. Modifying this variable without modifying proxy.config.ldap.cache.size can cause the LDAP subsystem to stop functioning.</td>
</tr>
<tr>
<td>proxy.config.ldap.auth.ttl_value</td>
<td>INT</td>
<td>3000</td>
<td>Specifies the amount of time (in minutes) that entries in the cache remain valid.</td>
</tr>
<tr>
<td>proxy.config.ldap.auth.purge_cache_on_auth_fail</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), configures Content Gateway to delete the authorization entry for the client in the LDAP cache if authorization fails.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.ldap.server.name</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the LDAP server name.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.ldap.server.port</td>
<td>INT</td>
<td>389</td>
<td>Specifies the LDAP server port.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.ldap.base.dn</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the LDAP Base Distinguished Name (DN). Obtain this value from your LDAP administrator.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.ldap.uid_filter</td>
<td>STRING</td>
<td>sAMAccountName</td>
<td>Specifies the LDAP login name/ID. Use this as a filter to search the full DN database. For eDirectory or other directory services, enter uid in this field.</td>
</tr>
<tr>
<td>proxy.config.ldap.secure.bind.enabled</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), configures the proxy to use secure LDAP (LDAPS) to communicate with the LDAP server. Secure communication is usually performed on port 636 or 3269.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.ldap.server.bind_dn</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the Full Distinguished Name (fully qualified name) of a user in the LDAP-based directory service. For example: CN=John Smith,CN=USERS, DC=MYCOMPANY, DC=COM Enter a maximum of 128 characters in this field. If no value is specified for this field, the proxy attempts to bind anonymously.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.ldap.server.bind_pwd</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies a password for the user identified by the proxy.config.ldap.proc.ldap.server.bind_dn variable.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.encode_convert</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the support of passwords with special characters. The variable proxy.config.ldap.proc.encode_name is required when this variable is enabled. This variable must be added manually. See this page for additional information.</td>
</tr>
<tr>
<td>proxy.config.ldap.proc.encode_name</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the encoding name to be used when proxy.config.ldap.proc.encode_convert is enabled. This variable must be added manually.</td>
</tr>
</tbody>
</table>
# RADIUS authentication

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.radius.auth.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) RADIUS proxy authentication.</td>
</tr>
<tr>
<td>proxy.config.radius.proc.radius.primary_server.name</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the hostname or IP address of the primary RADIUS authentication server.</td>
</tr>
<tr>
<td>proxy.config.radius.proc.radius.primary_server.auth_port</td>
<td>INT</td>
<td>1812</td>
<td>Specifies the RADIUS server port that Content Gateway uses to communicate with the RADIUS server.</td>
</tr>
<tr>
<td>proxy.config.radius.proc.radius.primary_server.shared_key</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the key used for encoding with the first RADIUS authentication server.</td>
</tr>
<tr>
<td>proxy.config.radius.proc.radius.secondary_server.name</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the hostname or IP address of the secondary RADIUS authentication server.</td>
</tr>
<tr>
<td>proxy.config.radius.proc.radius.secondary_server.auth_port</td>
<td>INT</td>
<td>1812</td>
<td>Specifies the port that the proxy uses to communicate with the secondary RADIUS authentication server.</td>
</tr>
<tr>
<td>proxy.config.radius.proc.radius.secondary_server.shared_key</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the key used for encoding with the secondary RADIUS authentication server.</td>
</tr>
<tr>
<td>proxy.config.radius.auth.min_timeout</td>
<td>INT</td>
<td>10</td>
<td>Specifies the amount of time the connection to the RADIUS server can remain idle before Content Gateway closes the connection.</td>
</tr>
<tr>
<td>proxy.config.radius.auth.max_retries</td>
<td>INT</td>
<td>10</td>
<td>Specifies the maximum number of times Content Gateway tries to connect to the RADIUS server.</td>
</tr>
<tr>
<td>proxy.config.radius.cache.size</td>
<td>INT</td>
<td>1000</td>
<td>Specifies the number of entries allowed in the RADIUS cache. The minimum value is 256 entries.</td>
</tr>
</tbody>
</table>
### Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.radius.cache.storage_size</td>
<td>INT</td>
<td>15728640</td>
<td>Specifies the maximum amount of space that the RADIUS cache can occupy on disk. This value must be at least one hundred times the number of entries. It is recommended that you provide the maximum amount of disk space possible.</td>
</tr>
<tr>
<td>proxy.config.radius.auth.ttl_value</td>
<td>INT</td>
<td>60</td>
<td>Specifies the number of minutes that Content Gateway stores username and password entries in the RADIUS cache.</td>
</tr>
</tbody>
</table>

### NTLM

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.ntlm.auth.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) NTLM proxy authentication.</td>
</tr>
<tr>
<td>proxy.config.ntlm.dc.list</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the hostnames of the domain controllers. You must separate each entry with a comma. The format is: host_name[:port] [%netbios_name] or IP_address[:port] [%netbios_name] If you are using Active Directory 2008, you must include the netbios_name or use SMB port 445.</td>
</tr>
</tbody>
</table>
### Configuration Variable Data

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.ntlm.dc.load_balance</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) load balancing. When enabled, Content Gateway balances the load when sending authentication requests to the domain controllers. <strong>Note:</strong> When multiple domain controllers are specified, even if load balancing is disabled, when the load on the primary domain controller reaches the maximum number of connections allowed, new requests are sent to a secondary domain controller as a short-term failover provision, until such time that the primary domain controller can accept new connections.</td>
</tr>
<tr>
<td><code>proxy.config.ntlm.dc.max_connections</code></td>
<td>INT</td>
<td>10</td>
<td>Specifies the maximum number of connections Content Gateway can have open to the domain controller.</td>
</tr>
<tr>
<td><code>proxy.config.ntlm.cache.enabled</code></td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) the NTLM cache. Applies only when Content Gateway is an explicit proxy. When disabled, Content Gateway does not store any credentials in the NTLM cache for future use. Content Gateway always sends the credentials to the domain server to be validated.</td>
</tr>
<tr>
<td><code>proxy.config.ntlm.cache.ttl_value</code></td>
<td>INT</td>
<td>900</td>
<td>Specifies the number of seconds that Content Gateway stores entries in the NTLM cache. The supported range of values is 300 to 86400 seconds.</td>
</tr>
<tr>
<td><code>proxy.config.ntlm.cache.size</code></td>
<td>INT</td>
<td>5000</td>
<td>Specifies the number of entries allowed in the NTLM cache.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.ntlm.cache.storage_size</td>
<td>INT</td>
<td>15728640</td>
<td>Specifies the maximum amount of space that the NTLM cache can occupy on disk. This value should be proportionate to number of entries in the NTLM cache. For example, if each entry in the NTLM cache is approximately 128 bytes and the number of entries allowed in the NTLM cache is 5000, the cache storage size should be at least 64000 bytes.</td>
</tr>
</tbody>
</table>
| proxy.config.ntlm.cache_exception.list | STRING | NULL | Holds the list of IP addresses and IP address ranges that will not be cached. This variable gets its value from the Content Gateway manager NTLM Multi-Host IP addresses field. The exception list is a comma separated list that can contain up to:  
- 64 IPv4 addresses  
- 32 IPv4 address ranges  
- 24 IPv6 addresses  
- 12 IPv6 address ranges |
| proxy.config.ntlm.fail_open | INT | 1 | Enables (1) or disables (0) whether client requests are allowed to proceed when authentication fails due to:  
- no response from the domain controller  
- badly formed messages from the client  
- invalid SMB responses  
**Note:** Password authentication failures are always failures. |
| proxy.config.ntlm.check_account_passwd | INT | 0 | Enables (1) or disables (0) whether Content Gateway will create a log file entry when users are locked out after multiple failed password errors. Filter.config can be edited for user agents causing the lockout. **NOTE:** This variable must be added to the config file and should only be used for debugging purposes and then disabled. |
# Integrated Windows Authentication

Integrated Windows Authentication

### Configuration Variable	Data Type	Default Value	Description
proxy.config.winauth.enabled | INT | 0 | Enables (1) or disables (0) Integrated Windows Authentication (Kerberos).

proxy.config.winauth.realm | STRING | NULL | Specifies the name of the Windows Active Directory domain. By entering "*", all domain controllers found in the DNS SRV records will be used.

proxy.config.winauth.dc.list | STRING | NULL | Specifies a comma separated list of domain controllers.

proxy.config.winauth.log_denied_requests | INT | 1 | Enables (1) or disables (0) logging of denied authentication requests.
## Transparent authentication

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.transparent_auth_hostname</td>
<td>STRING</td>
<td>NULL</td>
<td>Specify an alternate hostname for the proxy that can be resolved for all clients via DNS. This is needed if the regular hostname of the Content Gateway machine cannot be resolved for all users via DNS.</td>
</tr>
<tr>
<td>proxy.config.http.transparent_auth_type</td>
<td>INT</td>
<td>1</td>
<td>Specify:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 to associate a session ID with the username after the user session is authenticated. This setting is required to uniquely identify users who share a single IP address, such as in proxy-chaining or network address translation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 to associate a client IP address with a username after the user session is authenticated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In either mode, the length of time before a client must re-authenticate is determined by the value of proxy.config.http.transparent_auth_session_time.</td>
</tr>
<tr>
<td>proxy.config.http.transparent_auth_session_time</td>
<td>INT</td>
<td>15</td>
<td>Specify the length of time (in minutes) before the browser must re-authenticate. This value is used in both IP and cookie modes.</td>
</tr>
</tbody>
</table>
## HTTP engine

### Configuration Variable	Data Type	Default Value	Description
proxy.config.http.server_port | INT | 8080 | Specifies the port that Content Gateway uses when acting as a Web proxy server for Web traffic or when serving Web traffic transparently.

proxy.config.http.server_port_attr | STRING | X | Specifies the server port options. You can specify one of the following:
- C=SERVER_PORT_COMPRESSED
- X=SERVER_PORT_DEFAULT
- T=SERVER_PORT_BLIND_TUNNEL

proxy.config.http.server_other_ports | STRING | NULL | Specifies the ports other than the port specified by the variable `proxy.config.http.server_port` to bind for incoming HTTP requests.

proxy.config.http.ssl_ports | STRING | 443 563 8081 8071 9443 9444 8443 9447 | Specifies the ports used for tunneling. This is a space-separated list that can also include ranges of ports, e.g. 1-65535. Content Gateway allows tunnels only to the specified ports.

proxy.config.http.insert_request_via_str | INT | 1 | Specify one of the following:
- 0 = no extra information is added to the string.
- 1 = all extra information is added.
- 2 = some extra information is added.

proxy.config.http.insert_response_via_str | INT | 1 | Specify one of the following:
- 0 = no extra information is added to the string.
- 1 = all extra information is added.
- 2 = some extra information is added.
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.enable_url_expandomatic</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) .com domain expansion, which configures Content Gateway to attempt to resolve unqualified hostnames by redirecting them to the expanded address, prepended with <a href="http://www">www</a>. and appended with .com; for example, if a client makes a request to host, Content Gateway redirects the request to <a href="http://www.host.com">www.host.com</a>.</td>
</tr>
<tr>
<td>proxy.config.http.no_dns_just_forward_to_parent</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), and if HTTP parent caching is enabled, Content Gateway does no DNS lookups on request hostnames.</td>
</tr>
<tr>
<td>proxy.config.http.uncacheable_requests_bypass_parent</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway bypasses the parent proxy for a request that is not cacheable.</td>
</tr>
<tr>
<td>proxy.config.http.keep_alive_enabled</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) the use of keep-alive connections to either origin servers or clients.</td>
</tr>
</tbody>
</table>
| proxy.config.http.chunking_enabled                           | INT       | 1             | Specifies whether Content Gateway will generate a chunked response:  
  • 0 = Never  
  • 1 = Always |
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| proxy.config.http.send_http11_requests | INT | 3 | Configures Content Gateway to use HTTP Version 1.1 when communicating with origin servers. You can specify one of the following values:  
- 0 = Never use HTTP 1.1 when communicating with origin servers.  
- 1 = Always use HTTP 1.1 when communicating with origin servers.  
- 2 = Use HTTP 1.1 if the origin server has previously used HTTP 1.1.  
- 3 = Use HTTP 1.1 if the client request is HTTP 1.1 and the origin server has previously used HTTP 1.1.  
Note: If HTTP 1.1 is used, Content Gateway can use keep-alive connections with pipelining to origin servers. If HTTP 0.9 is used, Content Gateway does not use keep-alive connections to origin servers. If HTTP 1.0 is used, a Content Gateway can use keep-alive connections without pipelining to origin servers. |
| proxy.config.http.send_http11_asfirstrequest | INT | 1 | When enabled (1), specifies that Content Gateway send HTTP 1.1 in the first request to server. Otherwise, the default behavior is specified by `proxy.config.http.send_http11_requests`. |
| proxy.config.http.share_server_sessions | INT | 1 | Enables (1) or disables (0) the re-use of server sessions.  
Note: When IP spoofing is enabled, Content Gateway automatically disables this variable. |
| proxy.config.http.share_server_sessions_max | INT | 2500 | Specifies the maximum number of server sessions that can be reused. |
| proxy.config.http.ftp_enabled | INT | 1 | Enables (1) or disables (0) Content Gateway from serving FTP requests sent via HTTP. |
Configuration Files

### Configuration Variable Data

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.http.record_heartbeat</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) content_cop heartbeat logging.</td>
</tr>
<tr>
<td><code>proxy.config.http.large_file_support</code></td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway supports downloading of files larger than 2 GB.</td>
</tr>
</tbody>
</table>

#### Parent proxy configuration

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.http.parent_proxy.routing_enable</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the HTTP parent caching option. See Hierarchical Caching, page 95.</td>
</tr>
<tr>
<td><code>proxy.config.http.parent_proxy.retry_time</code></td>
<td>INT</td>
<td>300</td>
<td>Specifies the amount of time allowed between connection retries to a parent cache that is unavailable.</td>
</tr>
<tr>
<td><code>proxy.config.http.parent_proxy.fail_threshold</code></td>
<td>INT</td>
<td>10</td>
<td>Specifies the number of times the connection to the parent cache can fail before Content Gateway considers the parent unavailable.</td>
</tr>
<tr>
<td><code>proxy.config.http.parent_proxy.total_connect_attempts</code></td>
<td>INT</td>
<td>4</td>
<td>Specifies the total number of connection attempts allowed to a parent cache before Content Gateway bypasses the parent or fails the request (depending on the go_direct option in the bypass.config file).</td>
</tr>
<tr>
<td><code>proxy.config.http.parent_proxy.per_parent_connect_attempts</code></td>
<td>INT</td>
<td>2</td>
<td>Specifies the total number of connection attempts allowed per parent if multiple parents are used.</td>
</tr>
<tr>
<td><code>proxy.config.http.parent_proxy.connect_attempts_timeout</code></td>
<td>INT</td>
<td>30</td>
<td>Specifies the timeout value, in seconds, for parent cache connection attempts.</td>
</tr>
<tr>
<td><code>proxy.config.http.forward.proxy_auth_to_parent</code></td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), the Proxy-Authorization header is not stripped from requests sent to a parent proxy. Enable this when Content Gateway is a child proxy and the parent proxy performs authentication.</td>
</tr>
</tbody>
</table>
## Configuration Files

### Configuration Variable Data

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.child_proxy.read_auth_from_header</td>
<td>INT</td>
<td>0</td>
<td>When Content Gateway is the parent proxy, read X-Authenticated-User and X-Forwarded-For fields from incoming request headers. 1 = enabled 0 = disabled</td>
</tr>
<tr>
<td>proxy.local.http.parent_proxy.disable_ssl_connect_tunneling</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), HTTPS requests bypass the parent proxy.</td>
</tr>
<tr>
<td>proxy.local.http.parent_proxy.disable_unknown_connect_tunneling</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), non-HTTPS tunnel requests bypass the parent proxy.</td>
</tr>
</tbody>
</table>

### HTTP connection timeouts (secs)

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.keep_alive_no_activity_timeout_in</td>
<td>INT</td>
<td>60</td>
<td>Specifies how long Content Gateway keeps connections to clients open for a subsequent request after a transaction ends.</td>
</tr>
<tr>
<td>proxy.config.http.keep_alive_no_activity_timeout_out</td>
<td>INT</td>
<td>60</td>
<td>Specifies how long Content Gateway keeps connections to origin servers open for a subsequent transfer of data after a transaction ends.</td>
</tr>
<tr>
<td>proxy.config.http.transaction_no_activity_timeout_in</td>
<td>INT</td>
<td>120</td>
<td>Specifies how long Content Gateway keeps connections to clients open if a transaction stalls.</td>
</tr>
<tr>
<td>proxy.config.http.transaction_no_activity_timeout_out</td>
<td>INT</td>
<td>120</td>
<td>Specifies how long Content Gateway keeps connections to origin servers open if the transaction stalls.</td>
</tr>
<tr>
<td>proxy.config.http.transaction_active_timeout_in</td>
<td>INT</td>
<td>0</td>
<td>Specifies how long Content Gateway remains connected to a client. If the transfer to the client is not complete before this timeout expires, Content Gateway closes the connection. The default value of 0 specifies that there is no timeout.</td>
</tr>
</tbody>
</table>
Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.transaction_active_timeout_out</td>
<td>INT</td>
<td>0</td>
<td>Specifies how long Content Gateway waits for fulfillment of a connection request to an origin server. If Content Gateway does not complete the transfer to the origin server before this timeout expires, the connection request is terminated. The default value of 0 specifies that there is no timeout.</td>
</tr>
<tr>
<td>proxy.config.http.accept_no_activity_timeout</td>
<td>INT</td>
<td>120</td>
<td>Specifies the timeout interval in seconds before Content Gateway closes a connection that has no activity.</td>
</tr>
<tr>
<td>proxy.config.http.background_fill_active_timeout</td>
<td>INT</td>
<td>60</td>
<td>Specifies how long Content Gateway continues a background fill before giving up and dropping the origin server connection.</td>
</tr>
<tr>
<td>proxy.config.http.background_fill_completed_threshold</td>
<td>FLOAT</td>
<td>0.50000</td>
<td>Specifies the proportion of total document size already transferred when a client aborts at which the proxy continues fetching the document from the origin server to get it into the cache (a background fill).</td>
</tr>
</tbody>
</table>

### Origin server connection attempts

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.connect_attempts_max_retries</td>
<td>INT</td>
<td>6</td>
<td>Specifies the maximum number of connection retries Content Gateway makes when the origin server is not responding.</td>
</tr>
<tr>
<td>proxy.config.http.connect_attempts_max_retries_dead_server</td>
<td>INT</td>
<td>2</td>
<td>Specifies the maximum number of connection retries Content Gateway makes when the origin server is unavailable.</td>
</tr>
<tr>
<td>proxy.config.http.connect_attempts_rr_retries</td>
<td>INT</td>
<td>2</td>
<td>Specifies the maximum number of failed connection attempts allowed before a round-robin entry is marked as down if a server has round-robin DNS entries.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.http.connect_attempts_timeout</td>
<td>INT</td>
<td>60</td>
<td>Specifies the timeout value in seconds for an origin server connection.</td>
</tr>
<tr>
<td>proxy.config.http.streaming_connect_attempts_timeout</td>
<td>INT</td>
<td>1800</td>
<td>Specifies the timeout value in seconds for a streaming content connection.</td>
</tr>
<tr>
<td>proxy.config.http.down_server.cache_time</td>
<td>INT</td>
<td>30</td>
<td>Specifies how long in seconds Content Gateway remembers that an origin server was unreachable.</td>
</tr>
<tr>
<td>proxy.config.http.down_server.abort_threshold</td>
<td>INT</td>
<td>10</td>
<td>Specifies the number of seconds before Content Gateway marks an origin server as unavailable when a client abandons a request because the origin server was too slow in sending the response header.</td>
</tr>
</tbody>
</table>
## Negative response caching

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.negative_caching_enabled</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway caches negative responses, such as 404 Not Found, if a requested page does not exist. The next time a client requests the same page, Content Gateway serves the negative response from the cache. Content Gateway caches the following negative responses: 204 No Content 305 Use Proxy 400 Bad Request 403 Forbidden 404 Not Found 405 Method Not Allowed 500 Internal Server Error 501 Not Implemented 502 Bad Gateway 503 Service Unavailable 504 Gateway Timeout</td>
</tr>
<tr>
<td>proxy.config.http.negative_caching_lifetime</td>
<td>INT</td>
<td>1800</td>
<td>Specifies how long Content Gateway keeps the negative responses as valid in cache.</td>
</tr>
</tbody>
</table>

## Proxy users variables

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.anonymize_remove_from</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway removes the From header that accompanies transactions to protect the privacy of your users.</td>
</tr>
<tr>
<td>proxy.config.http.anonymize_remove_referer</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway removes the Referer header that accompanies transactions to protect the privacy of your site and users.</td>
</tr>
</tbody>
</table>
### Configuration Variable Data

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.anonymize_remove_user_agent</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway removes the User-Agent header that accompanies transactions to protect the privacy of your site and users.</td>
</tr>
<tr>
<td>proxy.config.http.anonymize_remove_cookie</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway removes the Cookie header that accompanies transactions to protect the privacy of your site and users.</td>
</tr>
<tr>
<td>proxy.config.http.anonymize_remove_client_ip</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway removes Client-IP headers for more privacy.</td>
</tr>
<tr>
<td>proxy.config.http.anonymize_insert_client_ip</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway inserts Client-IP headers to retain the client’s IP address.</td>
</tr>
<tr>
<td>proxy.config.http.anonymize_other_header_list</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the headers that Content Gateway will remove from outgoing requests. Can be specified in a comma separated list.</td>
</tr>
<tr>
<td>proxy.config.http.snarf_username_from_authorization</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway takes the username and password from the authorization header for LDAP if the authorization scheme is Basic.</td>
</tr>
<tr>
<td>proxy.config.http.insert_squid_x_forwarded_for</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway adds the client IP address to the X-Forwarded-For header.</td>
</tr>
<tr>
<td>proxy.config.http.insert_x_authenticated_user</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway inserts the X-Authenticated-User header to advertise the proxy authenticated user.</td>
</tr>
</tbody>
</table>
## Security

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.push_method_enabled</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), filter.config rules can be used to push content directly into the cache without a user request. You must add a filtering rule with the PUSH action to ensure that only known source IP addresses implement PUSH requests to the cache. This variable must be enabled before PUSH is available in the Method drop down list in the configuration file editor.</td>
</tr>
</tbody>
</table>

## Cache control

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.cache.http</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) caching of HTTP requests.</td>
</tr>
<tr>
<td>proxy.config.http.cache.ftp</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) caching of FTP requests sent via HTTP.</td>
</tr>
<tr>
<td>proxy.config.http.cache.ignore_client_no_cache</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway ignores client requests to bypass the cache.</td>
</tr>
<tr>
<td>proxy.config.http.cache.ims_on_client_no_cache</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway issues a conditional request to the origin server if an incoming request has a no-cache header.</td>
</tr>
<tr>
<td>proxy.config.http.cache.ignore_server_no_cache</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway ignores origin server requests to bypass the cache.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>proxy.config.http.cache.cache_responses_to_cookies</td>
<td>INT</td>
<td>3</td>
<td>Specifies how cookies are cached:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 = do not cache any responses to cookies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 = cache for any content-type</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 = cache only for image types</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 = cache for all but text content-types</td>
</tr>
<tr>
<td>proxy.config.http.cache.ignore_authentication</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway ignores WWW-Authentication headers in responses.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WWW-Authentication headers are removed and not cached.</td>
</tr>
<tr>
<td>proxy.config.http.cache.cache_urls_that_look_dynamic</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) caching of URLs that look dynamic.</td>
</tr>
<tr>
<td>proxy.config.http.cache.enable_default_vary_headers</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) caching of alternate versions of HTTP objects that do not contain the Vary header.</td>
</tr>
<tr>
<td>proxy.config.http.cache.when_to_revalidate</td>
<td>INT</td>
<td>0</td>
<td>Specifies when to revalidate content:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 0 = Use cache directives or heuristic (the default value).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 1 = Stale if heuristic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 2 = Always stale (always revalidate).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 3 = Never stale.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 4 = Use cache directives or heuristic (0) unless the request has an If-Modified-Since header. If the request has an If-Modified-Since header, Content Gateway always revalidates the cached content and uses the client’s If-Modified-Since header for the proxy request.</td>
</tr>
</tbody>
</table>
### Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| proxy.config.http.cache.when_to_add_no_cache_to_msie_requests | INT | 0 | Specifies when to add **no-cache** directives to Microsoft Internet Explorer requests. You can specify the following:  
- **0** = **no-cache** not added to MSIE requests.  
- **1** = **no-cache** added to IMS MSIE requests.  
- **2** = **no-cache** added to all MSIE requests. |
| proxy.config.http.cache.required_headers | INT | 0 | Specifies the type of headers required in a request for the request to be cacheable.  
- **0** = no required headers to make document cacheable.  
- **1** = at least **Last-Modified** header required.  
- **2** = explicit lifetime required, **Expires** or **Cache-Control**. |
| proxy.config.http.cache.max_stale_age | INT | 604800 | Specifies the maximum age allowed for a stale response before it cannot be cached. |
| proxy.config.http.cache.range.lookup | INT | 1 | When enabled (1), Content Gateway looks up range requests in the cache. |
| proxy.config.http.cache.cache_301_responses | INT | 0 | Enables (1) or disables (0) caching of “301” response pages. |

### Heuristic expiration

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.cache.heuristic_min_lifetime</td>
<td>INT</td>
<td>3600</td>
<td>Specifies the minimum amount of time that a document in the cache can be considered fresh.</td>
</tr>
<tr>
<td>proxy.config.http.cache.heuristic_max_lifetime</td>
<td>INT</td>
<td>86400</td>
<td>Specifies the maximum amount of time that a document in the cache can be considered fresh.</td>
</tr>
<tr>
<td>proxy.config.http.cache.heuristic_lm_factor</td>
<td>FLOAT</td>
<td>0.10000</td>
<td>Specifies the aging factor for freshness computations.</td>
</tr>
</tbody>
</table>
Dynamic content and content negotiation

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.cache.fuzz.time</td>
<td>INT</td>
<td>240</td>
<td>Specifies the interval in seconds before the document stale time that the proxy checks for an early refresh.</td>
</tr>
<tr>
<td>proxy.config.http.cache.fuzz.probability</td>
<td>FLOAT</td>
<td>0.00500</td>
<td>Specifies the probability that a refresh is made on a document during the specified fuzz time.</td>
</tr>
</tbody>
</table>

Anonymous FTP password

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.ftp.anonymous_passwd</td>
<td>STRING</td>
<td>the value of the administrator’s email as supplied during installation</td>
<td>Specifies the anonymous password for FTP servers that require a password for access. Content Gateway uses the Content Gateway user account name as the default value for this variable.</td>
</tr>
</tbody>
</table>
### Cached FTP document lifetime

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.ftp.cache.document_lifetime</td>
<td>INT</td>
<td>259200</td>
<td>Specifies the maximum amount of time that an FTP document can stay in the cache.</td>
</tr>
</tbody>
</table>

### FTP transfer mode

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.http.ftp.binary_transfer_only</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), all FTP documents requested from HTTP clients are transferred in binary mode only. When disabled (0), FTP documents requested from HTTP clients are transferred in ASCII or binary mode, depending on the document type.</td>
</tr>
</tbody>
</table>
## Customizable user response pages

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| `proxy.config.body_factory.enable_customizations`           | INT       | 0             | Specifies whether customizable response pages are enabled or disabled and which response pages are used:  
  - 0 = disable customizable user response pages  
  - 1 = enable customizable user response pages in the default directory only  
  - 2 = enable language-targeted user response pages |
| `proxy.config.body_factory.enable_logging`                  | INT       | 0             | Enables (1) or disables (0) logging for customizable response pages. When enabled, Content Gateway records a message in the error log each time a customized response page is used or modified. |
| `proxy.config.body_factory.template_sets_dir`               | STRING    | `config/body_factory` | Specifies the customizable response page default directory. |
| `proxy.config.body_factory.response_suppression_mode`       | INT       | 0             | Specifies when Content Gateway suppresses generated response pages:  
  - 0 = never suppress generated response pages  
  - 1 = always suppress generated response pages  
  - 2 = suppress response pages only for intercepted traffic |
## FTP engine

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>FTP over HTTP</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| proxy.config.ftp.data_connection_mode | INT | 1 | Specifies the FTP connection mode:  
  • 1 = PASV then PORT  
  • 2 = PORT only  
  • 3 = PASV only |
| proxy.config.ftp.control_connection_timeout | INT | 300 | Specifies how long Content Gateway waits for a response from the FTP server. |
| proxy.config.ftp.rc_to_switch_to_PORT | STRING | NULL | Specifies the response codes for which Content Gateway automatically fails over to the PORT command when PASV fails if the configuration variable `proxy.config.ftp.data_connection_mode` is set to 1.  
  This variable is used for FTP requests from HTTP clients only. |
| **FTP Proxy**          |           |               |             |
| proxy.config.ftp.ftp_enabled | INT | 0 | Enables (1) or disables (0) processing of FTP requests from FTP clients. |
| proxy.config.ftp.cache_enabled | INT | 0 | Enables (1) or disables (0) caching of FTP objects.  
  When this option is disabled, Content Gateway always serves FTP objects from the FTP server. |
| proxy.config.ftp.file_fresh_mdtm_checking_enabled | INT | 0 | Only applies when FTP caching is enabled.  
  When Enabled (1), Content Gateway sends an ‘MDTM’ command before the ‘RETR’ command to get the last modified time of file(s).  
  If the file is in cache and the last_contact time is the same as ‘MDTM’ response, the proxy serves the cache file to the client. |
| proxy.config.ftp.logging_enabled | INT | 1 | Enables (1) or disables (0) logging of FTP transactions. |
## Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.ftp.proxy_server_port</td>
<td>INT</td>
<td>2121</td>
<td>Specifies the port used for FTP connections.</td>
</tr>
</tbody>
</table>
| proxy.config.ftp.open_lisn_port_mode | INT | 1 | Specifies how FTP opens a listening port for a data transfer:  
• 1 = The operating system chooses an available port. Content Gateway sends 0 and retrieves the new port number if the listen succeeds.  
• 2 = The listening port is determined by the range of ports specified by the Content Gateway variables `proxy.config.ftp.min_lisn_port` and `proxy.config.ftp.max_lisn_port`, described below. |
| proxy.config.ftp.min_lisn_port | INT | 32768 | Specifies the lowest port in the range of listening ports used by Content Gateway for data connections when the FTP client sends a PASV or Content Gateway sends a PORT to the FTP server. |
| proxy.config.ftp.max_lisn_port | INT | 65535 | Specifies the highest port in the range of listening ports used by Content Gateway for data connections when the FTP client sends a PASV or Content Gateway sends a PORT to the FTP server. |
| proxy.config.ftp.server_data_default_pasv | INT | 1 | Specifies the default method used to set up server side data connections:  
• 1 = Content Gateway sends a PASV to the FTP server and lets the FTP server open a listening port.  
• 0 = Content Gateway tries PORT first (sets up a listening port on the proxy side of the connection). |
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.ftp.</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway can connect to a machine other than the one on which the FTP client is running to establish a data connection. The FTP client uses PORT to set up a listening port on its side and allows Content Gateway to connect to that port to establish the data connection (used to transfer files). When setting up the listening port, an FTP client specifies the IP address and port number for the listening port. If this variable is set to 0 (zero), Content Gateway cannot connect to the FTP client if the IP address sent by the client is different from the IP address of the machine running the FTP client.</td>
</tr>
<tr>
<td>different_client_port_ip_allowed</td>
<td>INT</td>
<td>1024</td>
<td>Specifies the number of times Content Gateway can try to open a listening port when the FTP client sends a PASV.</td>
</tr>
<tr>
<td>proxy.config.ftp.</td>
<td>INT</td>
<td>1024</td>
<td>Specifies the maximum number of times Content Gateway can try to open a listening port when sending a PORT to the FTP server.</td>
</tr>
<tr>
<td>try_pasv_times</td>
<td>INT</td>
<td>1024</td>
<td>Specifies the maximum number of times Content Gateway can try to connect to the FTP server’s control listening port.</td>
</tr>
<tr>
<td>proxy.config.ftp.</td>
<td>INT</td>
<td>3</td>
<td>Specifies the maximum number of times Content Gateway can try to connect to the FTP server’s data listening port when it sends a PASV to the FTP server and gets the IP/listening port information.</td>
</tr>
<tr>
<td>try_port_times</td>
<td>INT</td>
<td>3</td>
<td>Specifies the maximum number of times Content Gateway can try to connect to the FTP client’s data listening port when the FTP client sends a PORT with the IP/listening port information.</td>
</tr>
<tr>
<td>proxy.config.ftp.</td>
<td>INT</td>
<td>3</td>
<td>Specifies the maximum number of times Content Gateway can try to connect to the FTP client’s control listening port.</td>
</tr>
<tr>
<td>client_ctrl_no_activity_timeout</td>
<td>INT</td>
<td>900</td>
<td>Specifies the inactivity timeout, in seconds, for the FTP client control connection.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>proxy.config.ftp.client_ctrl_active_timeout</code></td>
<td>INT</td>
<td>14400</td>
<td>Specifies the active timeout, in seconds, for the FTP client control connection.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.server_ctrl_no_activity_timeout</code></td>
<td>INT</td>
<td>120</td>
<td>Specifies the inactivity timeout, in seconds, for the FTP server control connection.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.server_ctrl_active_timeout</code></td>
<td>INT</td>
<td>14400</td>
<td>Specifies the active timeout, in seconds, for the FTP server control connection.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.client_data_no_activity_timeout</code></td>
<td>INT</td>
<td>120</td>
<td>Specifies the maximum time, in seconds, that a client FTP data transfer connection can be idle before it is aborted.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.client_data_active_timeout</code></td>
<td>INT</td>
<td>14400</td>
<td>Specifies the maximum time, in seconds, of an FTP data transfer connection from a client.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.server_data_no_activity_timeout</code></td>
<td>INT</td>
<td>120</td>
<td>Specifies the maximum time, in seconds, that a server FTP data transfer connection can be idle before it is aborted.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.server_data_active_timeout</code></td>
<td>INT</td>
<td>14400</td>
<td>Specifies the maximum time, in seconds, of an FTP data transfer connection from a server.</td>
</tr>
<tr>
<td><code>proxy.config.ftp.pasv_accept_timeout</code></td>
<td>INT</td>
<td>120</td>
<td>Specifies the timeout value for a listening data port in Content Gateway (for PASV, the client data connection).</td>
</tr>
<tr>
<td><code>proxy.config.ftp.port_accept_timeout</code></td>
<td>INT</td>
<td>120</td>
<td>Specifies the timeout value for a listening data port in Content Gateway (for PORT, the server data connection).</td>
</tr>
<tr>
<td><code>proxy.config.ftp.share_ftp_server_ctrl_enabled</code></td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) sharing the server control connections among multiple anonymous FTP clients.</td>
</tr>
<tr>
<td><strong>Configuration Variable</strong></td>
<td><strong>Data Type</strong></td>
<td><strong>Default Value</strong></td>
<td><strong>Description</strong></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| `proxy.config.ftp.share_ only_after_session_end` | INT | 1 | Specifies how an FTP server control connection is shared between different FTP client sessions:  
- 1 = the FTP server control connection can be used by another FTP client session only when the FTP client session is complete (typically, when the FTP client sends out a QUIT command).  
- 0 = the FTP server control connection can be used by another FTP client session only if the FTP client session is not actively using the FTP server connection: for example, if the request is a cache hit or during an idle session. |
| `proxy.config.ftp.server_ ctrl_keep_alive_no_ activity_Timeout` | INT | 90 | Specifies the timeout value when the FTP server control connection is not used by any FTP clients. |
| `proxy.config.ftp. reverse FTP_enabled` | INT | 0 | Not supported. |
| `proxy.config.ftp. login info fresh in_ cache_time` | INT | 604800 | Specifies how long the 220/230 responses (login messages) can stay fresh in the cache. |
| `proxy.config.ftp.data_ source port 20 enabled` | INT | 0 | When enabled (1), bind to source port 20 for outgoing data transfer connections to Active mode FTP clients. |
| `proxy.config.ftp. directory listing fresh_ in_cache_time` | INT | 86400 | Specifies how long directory listings can stay fresh in the cache. |
| `proxy.config.ftp.file fresh in cache_time` | INT | 259200 | Specifies how long FTP files can stay fresh in the cache. |
| `proxy.config.ftp. simple directory listing _cache_enabled` | INT | 1 | Enables (1) or disables (0) caching of directory listings without arguments (for example, ’dir’ or ’ls’). |
| `proxy.config.ftp. full directory listing_ cache_enabled` | INT | 1 | Enables (1) or disables (0) caching of directory listings with arguments (for example, ’ls -a’ or ’ls *.txt’). |
### SOCKS processor

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.socks.socks_needed</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the SOCKS option. See Configuring SOCKS firewall integration, page 187.</td>
</tr>
<tr>
<td>proxy.config.socks.socks_version</td>
<td>INT</td>
<td>4</td>
<td>Specifies the SOCKS version.</td>
</tr>
<tr>
<td>proxy.config.socks.default_servers</td>
<td>STRING</td>
<td>s1.example.com:1080;socks2:4080</td>
<td>Specifies the names and ports of the SOCKS servers with which Content Gateway communicates.</td>
</tr>
<tr>
<td>proxy.config.socks.accept_enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the SOCKS proxy option. As a SOCKS proxy, Content Gateway receives SOCKS traffic (usually on port 1080) and forwards all requests directly to the SOCKS server.</td>
</tr>
<tr>
<td>proxy.config.socks.accept_port</td>
<td>INT</td>
<td>1080</td>
<td>Specifies the port on which Content Gateway accepts SOCKS traffic.</td>
</tr>
<tr>
<td>proxy.config.socks.socks_server_enabled</td>
<td>INT</td>
<td>0</td>
<td>Note: Configure only if Content Gateway is installed on an appliance.</td>
</tr>
<tr>
<td>proxy.config.socks.socks_server_port</td>
<td>INT</td>
<td>61080</td>
<td>Note: Configure only if Content Gateway is installed on an appliance.</td>
</tr>
</tbody>
</table>

### Net subsystem

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.net.connections_throttle</td>
<td>INT</td>
<td>45000</td>
<td>Specifies the maximum number of connections that Content Gateway can handle. If Content Gateway receives additional client requests, they are queued until existing requests are served. Do not set this variable below 100.</td>
</tr>
</tbody>
</table>
## Cluster subsystem

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.cluster.cluster_port</td>
<td>INT</td>
<td>8086</td>
<td>Specifies the port used for cluster communication.</td>
</tr>
<tr>
<td>proxy.config.cluster.ethernet_interface</td>
<td>STRING</td>
<td>your_interface</td>
<td>Specifies the network interface used for cluster traffic. All nodes in a cluster must use the same network interface.</td>
</tr>
</tbody>
</table>

## Cache

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.cache.permit.pinning</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the cache pinning option, which lets you keep objects in the cache for a specified time. You set cache pinning rules in the cache.config file (see cache.config, page 399).</td>
</tr>
</tbody>
</table>
| proxy.config.cache.ram_cache.size           | INT       | -1            | Specifies the size of the RAM cache, in bytes. 
-1 means that the RAM cache is automatically sized at approximately 41 MB per GB of disk. |
| proxy.config.cache.limits.http.max_alts     | INT       | 3             | Specifies the maximum number of HTTP alternates that Content Gateway can cache. |
| proxy.config.cache.max_doc_size             | INT       | 0             | Specifies the maximum size of documents in the cache (in bytes): 
0 = there is no size limit. |
## DNS

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.dns.search_default_domains</code></td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) local domain expansion so that Content Gateway can attempt to resolve unqualified hostnames by expanding to the local domain; for example, if a client makes a request to an unqualified host named <code>host_x</code>, and if the Content Gateway local domain is <code>y.com</code>, Content Gateway expands the hostname to <code>host_x.y.com</code>.</td>
</tr>
<tr>
<td><code>proxy.config.dns.splitDNS.enabled</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) DNS server selection. When enabled, Content Gateway refers to the <code>splitdns.config</code> file for the selection specification. See Using the Split DNS option, page 190.</td>
</tr>
<tr>
<td><code>proxy.config.dns.splitdns.def_domain</code></td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the default domain for split DNS requests. This value is appended automatically to the hostname if it does not include a domain before split DNS determines which DNS server to use.</td>
</tr>
<tr>
<td><code>proxy.config.dns.url_expansions</code></td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies a list of hostname extensions that are automatically added to the hostname after a failed lookup; for example, if you want Content Gateway to add the hostname extension <code>.org</code>, specify <code>org</code> as the value for this variable (Content Gateway automatically adds the dot ( . )). Note: If the variable <code>proxy.config.http.enable_url_expandomatic</code> is set to 1 (the default value), you do not have to add <code>www</code>, and <code>.com</code> to this list; Content Gateway tries <code>www</code>, and <code>.com</code> automatically after trying the values you specify.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.dns.lookup_timeout</td>
<td>INT</td>
<td>20</td>
<td>Specifies the DNS lookup timeout duration in seconds. When the timeout period expires, the lookup attempt is terminated. The default value is lower than proxy.config.hostdb.lookup_timeout and, therefore, takes precedence.</td>
</tr>
<tr>
<td>proxy.config.dns.retries</td>
<td>INT</td>
<td>5</td>
<td>Specifies the number of times a DNS lookup is retried before giving up.</td>
</tr>
<tr>
<td>proxy.config.dns.prefer_ipv4</td>
<td>INT</td>
<td>1</td>
<td>When a name resolves to both IPv4 and IPv6 addresses, specifies the preferred address type.</td>
</tr>
<tr>
<td>proxy.config.ipv6.ipv6_enabled</td>
<td>INT</td>
<td>0</td>
<td>Specifies to enable (1) or disable (0) support for IPv6.</td>
</tr>
</tbody>
</table>

**DNS proxy**

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.dns.proxy.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the DNS proxy caching option that lets you resolve DNS requests on behalf of clients. This option off-loads remote DNS servers and reduces response time for DNS lookups. See <em>DNS Proxy Caching</em>, page 107.</td>
</tr>
<tr>
<td>proxy.config.dns.proxy_port</td>
<td>INT</td>
<td>5353</td>
<td>Specifies the port that Content Gateway uses for DNS traffic.</td>
</tr>
</tbody>
</table>
## HostDB

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.hostdb.size</td>
<td>INT</td>
<td>200000</td>
<td>Specifies the maximum number of entries allowed in the host database.</td>
</tr>
<tr>
<td>proxy.config.hostdb.ttl_mode</td>
<td>INT</td>
<td>0</td>
<td>Specifies the host database time to live (ttl) mode. By default, the Content Gateway host database observes the time-to-live (ttl) values set by name servers. You can reconfigure Content Gateway to a different value. You can specify: 0 = obey the ttl values set by the name servers (default) 1 = ignore the ttl values set by name servers and use the value set by the Content Gateway configuration variable proxy.config.hostdb.timeout. Set this variable to a value appropriate for your environment. 2 = use the lower of the two values (the one set by the name server or the one set by Content Gateway) 3 = use the higher of the two values (the one set by the name server or the one set by Content Gateway)</td>
</tr>
<tr>
<td>proxy.config.hostdb.timeout</td>
<td>INT</td>
<td>86400</td>
<td>Specifies the foreground timeout, in seconds.</td>
</tr>
<tr>
<td>proxy.config.hostdb.fail.timeout</td>
<td>INT</td>
<td>60</td>
<td>Specifies the time for which a failed DNS will be cached in seconds.</td>
</tr>
<tr>
<td>proxy.config.hostdb.strict_round_robin</td>
<td>INT</td>
<td>0</td>
<td>When disabled (0), Content Gateway always uses the same origin server for the same client as long as the origin server is available.</td>
</tr>
</tbody>
</table>
## Logging configuration

### Configuration Variables

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| proxy.config.log2.logging_enabled              | INT       | 1             | Enables and disables event logging:
|                                                 |           |               | • 0 = logging disabled
|                                                 |           |               | • 1 = log errors only
|                                                 |           |               | • 2 = log transactions only
|                                                 |           |               | • 3 = full logging (errors + transactions)
|                                                 |           |               | See Working With Log Files, page 243. |
| proxy.config.log2.max_secs_per_buffer          | INT       | 5             | Specifies the maximum amount of time before data in the buffer is flushed to disk. |
| proxy.config.log2.max_space_mb_for_logs        | INT       | 5120 or 20480 | Specifies the amount of space allocated to the logging directory, in megabytes. When Content Gateway is on a V-series appliance, the size is 5120 (5 GB) and cannot be changed. When Content Gateway is installed on a stand-alone server, the default size is 20480 (20 GB) and the size is configurable. |
| proxy.config.log2.max_space_mb_for_orphan_logs | INT       | 25            | Specifies the amount of space allocated to the logging directory, in megabytes, if this node is acting as a collation client. |
| proxy.config.log2.max_space_mb_headroom        | INT       | 100           | Specifies the tolerance for the log space limit in bytes. If the variable proxy.config.log2.auto_delete_rolled_file is set to 1 (enabled), auto-deletion of log files is triggered when the amount of free space available in the logging directory is less than the value specified here. |
| proxy.config.log2.hostname                    | STRING    | localhost     | Specifies the hostname of the machine running Content Gateway. |
| proxy.config.log2.logfile_dir                  | STRING    | /opt/WCG/logs | Specifies the full path to the logging directory. |
### Proxy Server Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| proxy.config.log2.logfile_perm          | STRING    | rw-r--r--     | Specifies the log file permissions. The standard UNIX file permissions are used (owner, group, other). Valid values are: 
  - `=` no permission
  - `r` = read permission
  - `w` = write permission
  - `x` = execute permission
  Permissions are subject to the umask settings for the Content Gateway process. This means that a umask setting of 002 will not allow write permission for others, even if specified in the configuration file. Permissions for existing log files are not changed when the configuration is changed. Linux only. |
| proxy.config.log2.custom_logs_enabled   | INT       | 0             | When enabled (1), supports the definition and generation of custom log files according to the specifications in logs_xml.config. See [logs_xml.config](#), page 410. |
| proxy.config.log2.xml_logs_config       | INT       | 1             | Specifies the size, in MB, which when reached causes the log files to roll. See [Rolling event log files](#), page 253. |
| proxy.config.log2.squid_log_enabled     | INT       | 0             | Enables (1) or disables (0) the squid log file format. |
| proxy.config.log2.squid_log_is_ascii    | INT       | 1             | Specifies the squid log file type: 
  - `1` = ASCII
  - `0` = binary |
| proxy.config.log2.squid_log_name        | STRING    | squid         | Specifies the squid log filename. |
| proxy.config.log2.squid_log_header      | STRING    | NULL          | Specifies the squid log file header text. |
| proxy.config.log2.common_log_enabled    | INT       | 0             | Enables (1) or disables (0) the Netscape common log file format. |
| proxy.config.log2.common_log_is_ascii   | INT       | 1             | Specifies the Netscape common log file type: 
  - `1` = ASCII
  - `0` = binary |
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.log2.common_log_name</td>
<td>STRING</td>
<td>common</td>
<td>Specifies the Netscape common log filename.</td>
</tr>
<tr>
<td>proxy.config.log2.common_log_header</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the Netscape common log file header text.</td>
</tr>
<tr>
<td>proxy.config.log2.extended_log_enabled</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) the Netscape extended log file format.</td>
</tr>
</tbody>
</table>
| proxy.config.log2.extended_log_is_ascii | INT | 1 | Specifies the Netscape extended log file type:  
| | | | • 1 = ASCII  
| | | | • 0 = binary |
| proxy.config.log2.extended_log_name | STRING | extended | Specifies the Netscape extended log filename. |
| proxy.config.log2.extended_log_header | STRING | NULL | Specifies the Netscape extended log file header text. |
| proxy.config.log2.extended2_log_enabled | INT | 0 | Enables (1) or disables (0) the Netscape Extended-2 log file format. |
| proxy.config.log2.extended2_log_is_ascii | INT | 1 | Specifies the Netscape Extended-2 log file type:  
| | | | • 1 = ASCII  
| | | | • 0 = binary |
| proxy.config.log2.extended2_log_name | STRING | extended2 | Specifies the Netscape Extended-2 log filename. |
| proxy.config.log2.extended2_log_header | STRING | NULL | Specifies the Netscape Extended-2 log file header text. |
| proxy.config.log2.separate_host_logs | INT | 0 | Enables (1) when configured Content Gateway to create a separate log file for HTTP/FTP transactions for each origin server listed in the log_hosts.config file (see HTTP host log splitting, page 256). |
| proxy.local.log2.collation_mode | INT | 0 | Specifies the log collation mode:  
| | | | • 0 = Collation disabled.  
| | | | • 1 = This host is a log collation server.  
| | | | • 2 = This host is a collation client and sends entries using standard formats to the collation server.  
| | | For information on sending XML-based custom formats to the collation server, see logs_xml.config, page 410. |
### Configuration Variables

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.log2.collision_host</code></td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the hostname of the log collation server.</td>
</tr>
<tr>
<td><code>proxy.config.log2.collision_port</code></td>
<td>INT</td>
<td>8085</td>
<td>Specifies the port used for communication between the collation server and client.</td>
</tr>
<tr>
<td><code>proxy.config.log2.collision_secret</code></td>
<td>STRING</td>
<td>foobar</td>
<td>Specifies the password used to validate logging data and prevent the exchange of unauthorized information when a collation server is being used.</td>
</tr>
<tr>
<td><code>proxy.config.log2.collision_host_tagged</code></td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), configures Content Gateway to include the hostname of the collation client that generated the log entry in each entry.</td>
</tr>
<tr>
<td><code>proxy.config.log2.collision_retry_sec</code></td>
<td>INT</td>
<td>5</td>
<td>Specifies the number of seconds between collation server connection retries.</td>
</tr>
<tr>
<td><code>proxy.config.log2.rolling_enabled</code></td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) log file rolling. See Rolling event log files, page 253.</td>
</tr>
<tr>
<td><code>proxy.config.log2.rolling_interval_sec</code></td>
<td>INT</td>
<td>21600</td>
<td>Specifies the log file rolling interval, in seconds. The minimum value is 300 (5 minutes). The maximum value is 86400 seconds (one day).</td>
</tr>
<tr>
<td><code>proxy.config.log2.rolling_offset_hr</code></td>
<td>INT</td>
<td>0</td>
<td>Specifies the file rolling offset hour. The hour of the day that starts the log rolling period.</td>
</tr>
<tr>
<td><code>proxy.config.log2.rolling_size_mb</code></td>
<td>INT</td>
<td>10</td>
<td>Specifies the size, in megabytes, which when reached causes the current file to be closed and a new file to be created.</td>
</tr>
<tr>
<td><code>proxy.config.log2.auto_delete_rolled_files</code></td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables (0) automatic deletion of rolled files.</td>
</tr>
</tbody>
</table>
| `proxy.config.log2.sampling_frequency`     | INT       | 1             | Configures Content Gateway to log only a sample of transactions rather than every transaction. You can specify the following values:  
  - 1 = log every transaction  
  - 2 = log every second transaction  
  - 3 = log every third transaction and so on... |
## URL remap rules

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.url_remap.default_to_server_pac</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) requests for a PAC file on the proxy service port (8080 by default) to be redirected to the PAC port. For this type of redirection to work, the variable proxy.config.reverse_proxy.enabled must be set to 1.</td>
</tr>
<tr>
<td>proxy.config.url_remap.default_to_server_pac_port</td>
<td>INT</td>
<td>-1</td>
<td>Sets the PAC port so that PAC requests made to the Content Gateway proxy service port are redirected to this port. -1 specifies that the PAC port will be set to the autoconfiguration port (the default autoconfiguration port is 8083). This is the default setting. This variable can be used together with the proxy.config.url_remap.default_to_server_pac variable to get a PAC file from a different port. You must create and run a process that serves a PAC file on this port; for example, if you create a Perl script that listens on port 9000 and writes a PAC file in response to any request, you can set this variable to 9000, and browsers that request the PAC file from a proxy server on port 8080 will get the PAC file served by the Perl script.</td>
</tr>
</tbody>
</table>
### Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.url_remap.remap_required</td>
<td>INT</td>
<td>0</td>
<td>Set this variable to 1 if you want Content Gateway to serve requests only from origin servers listed in the mapping rules of the remap.config file. If a request does not match, the browser will receive an error.</td>
</tr>
<tr>
<td>proxy.config.url_remap.pristine_host_hdr</td>
<td>INT</td>
<td>0</td>
<td>Set this variable to 1 if you want to retain the client host header in a request during remapping.</td>
</tr>
</tbody>
</table>

### Scheduled update configuration

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.update.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) the Scheduled Update option.</td>
</tr>
<tr>
<td>proxy.config.update.force</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) a force immediate update. When enabled, Content Gateway overrides the scheduling expiration time for all scheduled update entries and initiates updates until this option is disabled.</td>
</tr>
<tr>
<td>proxy.config.update.retry_count</td>
<td>INT</td>
<td>10</td>
<td>Specifies the number of times Content Gateway retries the scheduled update of a URL in the event of failure.</td>
</tr>
<tr>
<td>proxy.config.update.retry_interval</td>
<td>INT</td>
<td>2</td>
<td>Specifies the delay in seconds between each scheduled update retry for a URL in the event of failure.</td>
</tr>
<tr>
<td>proxy.config.update.concurrent_updates</td>
<td>INT</td>
<td>100</td>
<td>Specifies the maximum simultaneous update requests allowed at any time. This option prevents the scheduled update process from overburdening the host.</td>
</tr>
</tbody>
</table>
## SNMP configuration

### Configuration Variable	Data Type	Default Value	Description
proxy.config.snmp.master_agent_enabled | INT | 0 | 
proxy.config.snmp.encap_enabled | INT | 0 | 

## Plug-in configuration

### Configuration Variable	Data Type	Default Value	Description
proxy.config.plugin.plugin_dir | STRING | config/plugins | Specifies the directory in which plugins are located.

## WCCP configuration

### Configuration Variable	Data Type	Default Value	Description
proxy.config.wccp.enabled | INT | 0 | Enables (1) or disables (0) WCCP.
### FIPS (Security Configuration)

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.fips.security_enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) FIPS 140-2 mode. Warning: Do not enable FIPS mode in records.config. Use Content Gateway manager: Configure &gt; Security &gt; FIPS Security. FIPS mode cannot be disabled without reinstalling Content Gateway.</td>
</tr>
<tr>
<td>proxy.config.fips.security_enabled_ui</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) FIPS 140-2 mode. Warning: Do not enable FIPS mode in records.config. Use Content Gateway manager: Configure &gt; Security &gt; FIPS Security. FIPS mode cannot be disabled without reinstalling Content Gateway.</td>
</tr>
</tbody>
</table>

### SSL Decryption

Help | Content Gateway | Version 8.1.x

#### Important

All SSL decryption settings should be made in the Content Gateway manager. None of the variables in the table below should be modified directly in records.config.

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.ssl.enabled</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway accepts SSL connections and performs URL filtering before establishing a connection with the origin server. See proxy.config.ssl_decryption.use_decryption to enable SSL decryption.</td>
</tr>
<tr>
<td>proxy.config.ssl_decryption.use_decryption</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway accepts and decrypts SSL traffic. See Working With Encrypted Data, page 141.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.ssl_decryption_ports</td>
<td>INT</td>
<td>443</td>
<td>Specifies the HTTPS ports. Content Gateway allows SSL decryption and policy lookup only to the specified ports.</td>
</tr>
<tr>
<td>proxy.config.ssl_server_port</td>
<td>INT</td>
<td>8080</td>
<td>The port on which Content Gateway listens for client SSL traffic.</td>
</tr>
<tr>
<td>proxy.config.administrator_id</td>
<td>STRING</td>
<td>NULL</td>
<td>Do not change. Holds the encrypted administrator ID.</td>
</tr>
<tr>
<td>proxy.config.ssl_decryption.tunnel_skype</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway identifies and tunnels Skype traffic (explicit proxy deployments only). User policies must be adjusted accordingly. See the configuration information in Enabling SSL support, page 145.</td>
</tr>
<tr>
<td>proxy.config.ssl_decryption.tunnel_unknown_protocols</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables the tunneling of unrecognized protocols using SSL ports.</td>
</tr>
<tr>
<td>proxy.config.ssl_decryption.tunnel_unknown_protocols._timeout</td>
<td>INT</td>
<td>10</td>
<td>Specifies the time in seconds that Content Gateway waits for the “client hello” response before tunneling the request as an unknown protocol.</td>
</tr>
<tr>
<td>proxy.config.ssl.server.SSLv2</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway accepts SSLv2 connections from clients. (In this case, “server” refers to Content Gateway’s role as server to the client.)</td>
</tr>
<tr>
<td>proxy.config.ssl.server.TLSv1</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway accepts TLSv1 connections from clients. (In this case, “server” refers to Content Gateway’s role as server to the client.)</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>proxy.config.ssl.server.TLSv11</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway accepts TLSv1.1 connections from clients. (In this case, “server” refers to Content Gateway’s role as server to the client.)</td>
</tr>
<tr>
<td>proxy.config.ssl.server.TLSv12</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway accepts TLSv1.2 connections from clients. (In this case, “server” refers to Content Gateway’s role as server to the client.)</td>
</tr>
<tr>
<td>proxy.config.ssl.client.SSLv2</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway accepts SSLv2 connections from origin servers. (In this case, “client” refers to Content Gateway’s role as client to the origin server.)</td>
</tr>
<tr>
<td>proxy.config.ssl.client.SSLv3</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway accepts SSLv3 connections from origin servers. (In this case, “client” refers to Content Gateway’s role as client to the origin server.)</td>
</tr>
<tr>
<td>proxy.config.ssl.client.TLSv1</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway accepts TLSv1 connections from origin servers. (In this case, “client” refers to Content Gateway’s role as client to the origin server.)</td>
</tr>
<tr>
<td>proxy.config.ssl.client.TLSv11</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway accepts TLSv1.1 connections from origin servers. (In this case, “client” refers to Content Gateway’s role as client to the origin server.)</td>
</tr>
<tr>
<td>proxy.config.ssl.client.TLSv12</td>
<td>INT</td>
<td>0</td>
<td>When enabled (1), Content Gateway accepts TLSv1.2 connections from origin servers. (In this case, “client” refers to Content Gateway’s role as client to the origin server.)</td>
</tr>
<tr>
<td>proxy.config.ssl.client.TLS_padding</td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), Content Gateway will add padding to ensure a “client hello” does not hang the connection</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>proxy.config.ssl.server.cipherlist_option</td>
<td>STRING</td>
<td>Default</td>
<td>Specifies the client-to-proxy cipher setting. Values are: Default, High, Medium, Low. See SSL configuration settings for inbound traffic, page 158.</td>
</tr>
<tr>
<td>proxy.config.ssl.server.cipherlist</td>
<td>STRING</td>
<td>ALL:@ADH:@STRENGTH:@EXP</td>
<td>The cipher list that corresponds to the cipher_list option setting.</td>
</tr>
<tr>
<td>proxy.config.ssl.client.cipherlist_option</td>
<td>STRING</td>
<td>Default</td>
<td>Specifies the cipher list setting. Values are: Default, High, Medium, Low. See SSL configuration settings for outbound traffic, page 160.</td>
</tr>
<tr>
<td>proxy.config.ssl.client.cipherlist</td>
<td>STRING</td>
<td>ALL:@ADH:@STRENGTH:@EXP</td>
<td>The cipher list that corresponds to the cipher_list option setting. See the preceding entry.</td>
</tr>
<tr>
<td>proxy.config.ssl.server.session_cache</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the SSL server session cache.</td>
</tr>
<tr>
<td>proxy.config.ssl.server.session_cache_timeout</td>
<td>INT</td>
<td>300</td>
<td>Specifies the SSL server session cache timeout period. The default is 300 seconds (5 minutes).</td>
</tr>
<tr>
<td>proxy.config.ssl.client.session_cache</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the SSL client session cache.</td>
</tr>
<tr>
<td>proxy.config.ssl.client.session_cache_timeout</td>
<td>INT</td>
<td>300</td>
<td>Specifies the SSL client session cache timeout period. The default is 300 seconds (5 minutes).</td>
</tr>
<tr>
<td>proxy.config.ssl.client.certification_level</td>
<td>INT</td>
<td>0</td>
<td>Specifies whether client certificates are not needed, optional, or required. Certification level should be: 0 = no client certificates, 1 = client certificates optional, 2 = client certificates required</td>
</tr>
<tr>
<td>proxy.config.ssl.server.cert.filename</td>
<td>STRING</td>
<td>server.crt.pem</td>
<td>Specifies the server certificate filename.</td>
</tr>
<tr>
<td>proxy.config.ssl.server.private_key.filename</td>
<td>STRING</td>
<td>Domainkey.pem</td>
<td>Specifies the private key for the server certificate.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.ssl.server. private_key.path</td>
<td>STRING</td>
<td>/config</td>
<td>Specifies the private key path for the server certificate.</td>
</tr>
<tr>
<td>proxy.config.ssl.CA. cert.filename</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the name of the file containing the list of CAs that Content Gateway will accept from a client. When the connection is from the client to Content Gateway and the value of proxy.config.ssl.client.certification_level is 1 or 2, Content Gateway sends the CA list to client.</td>
</tr>
<tr>
<td>proxy.config.ssl.CA. cert.path</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the path to the CA list files. See the preceding entry.</td>
</tr>
<tr>
<td>proxy.config.ssl.client.cert.policy</td>
<td>INT</td>
<td>1</td>
<td>For SSL certificate incidents, specifies whether to tunnel an incident (0), or block the request and create an entry in the incident list (1).</td>
</tr>
<tr>
<td>proxy.config.ssl.client.verify. server</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables the Certificate Verification Engine (CVE). See Validating certificates, page 161.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert.verify.denycnmismatch</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the CVE check: “Deny certificates where the common name does not match the URL” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert.verify.allowcnwild</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the CVE check: “Allow wildcard certificates” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert.verify.denyexpired</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the CVE check: “No expired or not yet valid certificates” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert.verify.certchain</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the CVE check: “Verify entire certificate chain” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.checkcrl</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) or disables the CVE check: “Check certificate revocation by CRL” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.checkocsp</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables the CVE check: “Check certificate revocation by OCSP” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.blockunknownocsp</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables the CVE check: “Block certificates with Unknown OCSP state” The setting applies only when the CVE is enabled.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.denymd5cert</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) denial of certificates that use an MD5 signature.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.revprefer</td>
<td>INT</td>
<td>1</td>
<td>Specifies the preferred method for the certificate revocation check. 1 = CRL 2 = OCSP</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.blocknouri</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables the CVE check: “Block certificates with no CRL URI and with no OCSP URI”</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.bypassfail</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) the certificate check failure bypass option that allows users to proceed to a site after the certificate check has failed.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.bypasscache</td>
<td>INT</td>
<td>1</td>
<td>Enables (1) the verification timeout cache.</td>
</tr>
<tr>
<td>proxy.config.ssl.cert. verify.bypasscachetimeout</td>
<td>INT</td>
<td>6</td>
<td>Specifies the time, in seconds, that an entry in verification bypass cache times out and is purged.</td>
</tr>
<tr>
<td>proxy.config.ssl_decryption_bypass. tunnel_non-ssl_traffic</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) tunneling of non-ssl traffic. This variable must be added manually.</td>
</tr>
</tbody>
</table>
## ICAP

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>proxy.config.icap.enabled</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) ICAP support with Websense Data Security Suite (DSS). See <em>Working With Web DLP</em>, page 129.</td>
</tr>
<tr>
<td>proxy.config.icap.ICAPUri</td>
<td>STRING</td>
<td>NULL</td>
<td>Specifies the Uniform Resource Identifier for the ICAP service. A backup server can be specified in a comma-separated list. Obtain the identifier from your DSS administrator. Enter the URI in the following format: <code>icap://hostname:port/path</code> For <code>hostname</code>, enter the IP address or hostname of the DSS Protector appliance. The default ICAP port is 1344. <code>Path</code> is the path of the ICAP service on the host machine. For example: <code>icap://ICAP_machine:1344/opt/icap_services</code> You do not need to specify the port if you are using the default ICAP port 1344.</td>
</tr>
<tr>
<td>proxy.config.icap.FailOpen</td>
<td>INT</td>
<td>1</td>
<td>Set to: • 1 to allow traffic when the ICAP server(s) is down • 0 to send a block page if the ICAP server(s) is down</td>
</tr>
<tr>
<td>proxy.config.icap.BlockHugeContent</td>
<td>INT</td>
<td>0</td>
<td>Set to: • 0 to send a block page if a file larger than the size limit specified by TRITON AP-DATA is sent. The default size limit is 12 MB. • 1 to allow traffic</td>
</tr>
</tbody>
</table>
### Configuration Variable Data

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
</table>
| `proxy.config.icap.AnalyzeSecureContent` | INT       | 1             | Set to:  
  - 0 if decrypted traffic should be sent directly to its destination.  
  - 1 if decrypted traffic should be sent to TRITON AP-DATA for analysis. |
| `proxy.config.icap.AnalyzeFTP`          | INT       | 1             | When enabled (1), send native FTP upload file transfers to ICAP server for analysis. |
| `proxy.config.icap.ActiveTimeout`       | INT       | 5             | The read/response timeout in seconds. The activity is considered a failure if the timeout is exceeded. |
| `proxy.config.icap.RetryTime`           | INT       | 5             | The recovery interval, in seconds, to test whether a down server is back up. |
| `proxy.config.icap.LoadBalance`         | INT       | 1             | When to ICAP servers are specified, set to:  
  - 1 to distribute requests to all available servers  
  - 0 to distribute requests to only the primary server. |

### Web DLP

#### Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.dss.enabled</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) support for on-box Web DLP. See <em>Working With Web DLP</em>, page 129.</td>
</tr>
<tr>
<td><code>proxy.config.dss.AnalyzeFTP</code></td>
<td>INT</td>
<td>1</td>
<td>When enabled (1), send native FTP upload file transfers to the on-box Web DLP policy engine for analysis.</td>
</tr>
</tbody>
</table>
| `proxy.config.dss.AnalyzeSecureContent` | INT       | 1             | Set to:  
  - 0 if decrypted traffic should be sent directly to its destination.  
  - 1 if decrypted traffic should be sent to TRITON AP-DATA for analysis. |
## Configuration Files

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>proxy.config.dss.analysis_timeout</code></td>
<td>INT</td>
<td>10000</td>
<td>Specifies the maximum length of time, in milliseconds, that a single file analysis can take before analysis is aborted.</td>
</tr>
<tr>
<td><code>proxy.config.dss.UsingLoginID</code></td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) sending Login ID rather than full user name to TRITON AP-DATA. This variable must be added manually.</td>
</tr>
</tbody>
</table>

## Connectivity, analysis, and boundary conditions

Help | Content Gateway | Version 8.1.x

<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wtg.config.subscription_key</code></td>
<td>STRING</td>
<td>NULL</td>
<td>Holds the TRITON AP-WEB subscription key value.</td>
</tr>
<tr>
<td><code>wtg.config.download_server_ip</code></td>
<td>STRING</td>
<td><code>download.websense.com</code></td>
<td>Holds the hostname or IP address of the Websense download server.</td>
</tr>
<tr>
<td><code>wtg.config.download_server_port</code></td>
<td>INT</td>
<td>80</td>
<td>Holds the port number of the Websense download server.</td>
</tr>
<tr>
<td><code>wtg.config.policy_server_ip</code></td>
<td>STRING</td>
<td></td>
<td>Holds the IP address of the Websense Policy Server.</td>
</tr>
<tr>
<td><code>wtg.config.policy_server_port</code></td>
<td>INT</td>
<td>55806</td>
<td>Holds the port number of the Websense Policy Server.</td>
</tr>
<tr>
<td><code>wtg.config.wse_server_ip</code></td>
<td>STRING</td>
<td></td>
<td>Holds the IP address of the Websense Filtering Service.</td>
</tr>
<tr>
<td><code>wtg.config.wse_server_port</code></td>
<td>INT</td>
<td>15868</td>
<td>Holds the port number of the Websense Filtering Service WISP interface.</td>
</tr>
<tr>
<td><code>wtg.config.wse_server_timeout</code></td>
<td>INT</td>
<td>5000</td>
<td>Specifies the maximum length of time, in milliseconds, for communication with Filtering Service.</td>
</tr>
<tr>
<td>Configuration Variable</td>
<td>Data Type</td>
<td>Default Value</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>wtg.config.ssl_bypassed_categories</td>
<td>STRING</td>
<td>NULL</td>
<td>This variable takes a list of category identifiers that will bypass SSL decryption. <strong>Do not change the value of this variable.</strong> It is included strictly as a troubleshooting aid. Use the Web module of the TRITON Manager to specify categories to bypass SSL decryption.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wtg.config.ssl_decryption_bypass_ip_based</td>
<td>INT</td>
<td>0</td>
<td>Specifies that the SSL category bypass process use only the IP address (not the hostname) when performing a category lookup. 0 = disabled 1 = enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wtg.config.ssl_fail_open</td>
<td>INT</td>
<td>1</td>
<td>Specifies whether SSL sites are decrypted if Filtering Service becomes unreachable. 0 = disable – causes all SSL sites to be decrypted when Filtering Service is unreachable. 1 = enable – causes all SSL sites <strong>not</strong> to be decrypted when Filtering Service is unreachable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wtg.config.fail_open</td>
<td>INT</td>
<td>1</td>
<td>Specifies whether Content Gateway will permit or block the request when Websense Web filtering (Filtering Service) is unavailable. Set to: • 0 to send a block page • 1 to permit the request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wtg.config.fail_open_analytic_scan</td>
<td>INT</td>
<td>1</td>
<td>Specifies how Content Gateway behaves should analytic scanning become non-functional. Set to: • 0 to block traffic • 1 to perform a lookup in the URL master database and apply policy <strong>Note:</strong> An alarm is raised whenever analytics scanning becomes non-functional.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wtg.config.archive_depth</td>
<td>INT</td>
<td>5</td>
<td>Specifies the maximum depth of analysis performed on archive files.</td>
</tr>
</tbody>
</table>

Note: An alarm is raised whenever analytics scanning becomes non-functional.
<table>
<thead>
<tr>
<th>Configuration Variable</th>
<th>Data Type</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wtg.config.max_decompressions</td>
<td>INT</td>
<td>10</td>
<td>Specifies the maximum number of total decompressions to be performed on archive files (per transaction). The value should not exceed 25.</td>
</tr>
<tr>
<td>wtg.config.max_subsamples</td>
<td>INT</td>
<td>10000</td>
<td>Specifies the maximum number of discrete files within an archive file that Content Gateway may decompress and analyze to classify a given transaction.</td>
</tr>
<tr>
<td>wtg.config.zipbomb_action</td>
<td>INT</td>
<td>1</td>
<td>For internal use. Indicates zip bomb analysis status. Do not change the value of this variable.</td>
</tr>
<tr>
<td>wtg.config.max_mem_allowed</td>
<td>INT</td>
<td>1500</td>
<td>Specifies in megabytes, the maximum amount of memory, which when consumed, causes Content Gateway to perform more extensive memory monitoring.</td>
</tr>
<tr>
<td>wtg.config.lowmem_behavior</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) bypass of scanning, but still filters.</td>
</tr>
<tr>
<td>wtg.config.lowmem_timeout</td>
<td>INT</td>
<td>120</td>
<td>Timeout value (in minutes) for the low-memory management. After that time, resets to “no management”.</td>
</tr>
<tr>
<td>wtg.config.rdnsclients</td>
<td>INT</td>
<td>0</td>
<td>Enables (1) or disables (0) logging of clients’ hostnames in the log records by doing reverse DNS on each.</td>
</tr>
<tr>
<td>wtg.config.ip_ranges_not_to_scan</td>
<td>STRING</td>
<td>10.0.0.0-10.255.255.255, 172.16.0.0-172.31.255.255, 192.168.0.0-192.168.255.255</td>
<td>Specifies internal IP address ranges not to scan. By default, the list is the standard private non-routable IP addresses. Address ranges are hyphenated with each range separated by a comma. This is especially helpful in explicit proxy deployments in which a PAC file is not used and you want to exclude the standard internal IP addresses from being scanned.</td>
</tr>
</tbody>
</table>
The `remap.config` file contains mapping rules that Websense Content Gateway uses to redirect HTTP requests permanently or temporarily without Content Gateway having to contact any origin server:

### Important

After you modify this file, restart the proxy or run `content_line -x` from the Content Gateway `bin` directory (`/opt/WCG/bin`) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.
Format

Each line in the **remap.config** file must contain a mapping rule. Content Gateway recognizes three space-delimited fields: type, target, and replacement. The following table describes the format of each field.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>type</strong></td>
<td>Enter one of the following:</td>
</tr>
<tr>
<td></td>
<td>• <strong>map</strong> provides the same function as <strong>redirect</strong>. Use of <strong>redirect</strong> is recommended.</td>
</tr>
<tr>
<td></td>
<td>• <strong>redirect</strong>—redirects HTTP requests permanently without having to contact the origin server. Permanent redirects notify the browser of the URL change (by returning an HTTP status code 301) so that the browser can update bookmarks.</td>
</tr>
<tr>
<td></td>
<td>• <strong>redirect_temporary</strong>—redirects HTTP requests temporarily without having to contact the origin server. Temporary redirects notify the browser of the URL change for the current request only (by returning an HTTP status code 307).</td>
</tr>
<tr>
<td></td>
<td>Note: <strong>reverse_map</strong> is not supported.</td>
</tr>
<tr>
<td><strong>target</strong></td>
<td>Enter the origin or <strong>from</strong> URL. You can enter up to four components: <code>scheme://host:port/path_prefix</code></td>
</tr>
<tr>
<td></td>
<td><code>scheme</code> can be <code>http</code>, <code>https</code>, or <code>ftp</code>.</td>
</tr>
<tr>
<td><strong>strict URL</strong></td>
<td>Enable <strong>Match URL Exactly</strong> to force matching to be exact against the entire requested URL.</td>
</tr>
<tr>
<td><strong>matching flag</strong></td>
<td>Without this option, the URL is compared up to the end of the target (<strong>From Path Prefix</strong>). If there is a match, the redirect is applied. This can cause unwanted matching, when the redirect URL includes the base URL. See <strong>Mapping and Redirection</strong>, page 332.</td>
</tr>
<tr>
<td><strong>replacement</strong></td>
<td>Enter the destination or <strong>to</strong> URL. You can enter up to four components: <code>scheme://host:port/path_prefix</code></td>
</tr>
<tr>
<td></td>
<td><code>scheme</code> can be <code>http</code>, <code>https</code>, or <code>ftp</code>.</td>
</tr>
</tbody>
</table>

**Note**

The scheme type (HTTP, HTTPS, FTP) of the target and replacement must match.

Examples

The following section shows example mapping rules in the **remap.config** file.
Redirect mapping rules

The following rule *permanently* redirects all HTTP requests for *www.company.com* to *www.company2.com*:

```
redirect http://www.company.com http://www.company2.com
```

The following rule *temporarily* redirects all HTTP requests for *www.company1.com* to *www.company2.com*:

```
```

socks.config

The *socks.config* file specifies:

- SOCKS servers that the proxy must use to access specific origin servers, and the order in which the proxy goes through the SOCKS server list.
- Origin servers that Content Gateway accesses directly, *without* going through a SOCKS server.

**Note**

It is recommended that all SOCKS configuration be performed in the Content Gateway manager.

**Important**

After you modify this file, you must restart the proxy.

Traffic that does not match a manually configured rule is handled via a default rule. A default rule is constructed for each SOCKS server with the *default* option enabled in the *Socks Servers* table. Default rules are created automatically and displayed on the SOCKS Server page. Default rules are not written in the *socks.config* file. The destination IP address is ‘All’.

Format

To specify SOCKS servers that the proxy must use to reach specific origin servers, add rules to the *socks.config* file in the following format:

```
dest_ip=ipaddress socksparent="alias1" [round_robin=value]
```

where:
ipaddress is the origin server IP address or range of IP addresses separated by - or /.

alias1 is the alias name of the SOCKS server named in the SOCKS Servers list.

value is either strict if you want Content Gateway to try the SOCKS servers one by one, or false if you do not want round-robin selection to occur.

To specify origin servers that you want Content Gateway to access directly, without going through the SOCKS server(s), enter a rule in socks.config in the following format:

no_socks ipaddress

where ipaddress is a comma-separated list of the IP addresses or IP address ranges associated with the origin servers that you want Content Gateway to access directly. Do not specify the all networks broadcast address: 255.255.255.255.

Note
Each rule in socks.config can consist of a maximum of 400 characters. The order of the rules in the socks.config file is not significant.

Examples

The following example configures the proxy to send requests to the origin servers associated with the range of IP addresses 123.15.17.1 - 123.14.17.4 through the SOCKS server aliases ‘alias1’ and ‘alias2’. Because the optional specifier round_robin is set to strict, the proxy sends the first request to alias1, the second request to alias2, the third request to alias1, and so on.

dest_ip=123.14.15.1 - 123.14.17.4
socksparent="alias; alias2" round_robin=strict

The following example configures the proxy to access the origin server associated with the IP address 11.11.11.1 directly, without going through the SOCKS server:

no_socks 11.11.11.1

The following example configures Content Gateway to access the origin servers associated with the range of IP addresses 123.14.15.1 - 123.14.17.4 and the IP address 113.14.18.2 directly, without going through the SOCKS server:

no_socks 123.14.15.1 - 123.14.17.4, 113.14.18.2
**socks_server.config**

The `socks_server.config` file specifies the SOCKS servers available to Content Gateway.

**Format**

To specify SOCKS servers use the following format:

```
alias=name host=IP_address|domain_name port=port_number
[username=user_name password=password] default=true|false
```

where:

- `name` is the name of a SOCKS server.
- `IP_address` or `domain_name` is an IP address or a domain name that can be resolved by your DNS service.
- `port_number` is the port on which the SOCKS server is listening.
- `username` and `password` are the username/password pair for SOCKS 5 authentication. The password is encrypted.

Set default to `true` to make the specified server a default SOCKS server. When the default server option is on, the SOCKS server is used when no SOCKS rule matches.

If no SOCKS server is designated a default server, traffic that doesn’t match a rule is not routed through a SOCKS server.

**Examples:**

This example adds the SOCKS server ‘default1’ at 127.0.0.1 on port 61080. It is designated a default SOCKS server.

```
alias=default1 host=127.0.0.1 port=61080 default=true
```

This example adds a SOCKS server that uses authentication. Note that the password, “465751475058” is not the real password. It is encrypted.

```
alias=test1 host=socks5.example.com port=1080 username=test
password=465751475058 default=false
```

If this file is modified, you must restart Content Gateway.

---

**Note**

Each rule in `socks_server.config` cannot exceed 400 characters.
splitdns.config

The splitdns.config file enables you to specify the DNS server that Content Gateway should use for resolving hosts under specific conditions.

To specify a DNS server, you must supply the following information in each active line within the file:

- A primary destination specifier in the form of a destination domain, a destination host, or a URL regular expression
- A set of server directives, listing one or more DNS servers with corresponding port numbers

You can also include the following optional information with each DNS server specification:

- A default domain for resolving hosts
- A search list specifying the domain search order when multiple domains are specified

For more information, see Using the Split DNS option, page 190.

**Important**

After you modify this file, run `content_line -x` from the Content Gateway bin directory (/opt/WCG/bin) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

**Format**

Each line in the splitdns.config file uses one of the following formats:

```plaintext
dest_domain=dest_domain | dest_host | url_regex
dnamed=dns_server
def_domain=def_domain search_list=search_list
```
The following table describes each field.

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dest_domain</td>
<td>A valid domain name. This specifies that the DNS server selection be based on the destination domain. You can prefix the domain with an exclamation mark (!) to indicate the NOT logical operator.</td>
</tr>
<tr>
<td>dest_host</td>
<td>A valid hostname. This specifies that the DNS server selection be based on the destination host. You can prefix the host with an exclamation mark (!) to indicate the NOT logical operator.</td>
</tr>
<tr>
<td>url_regex</td>
<td>A valid URL regular expression. This specifies that the DNS server selection be based on a regular expression. See <em>Specifying URL regular expressions (url_regex)</em> for information on using regular expressions.</td>
</tr>
<tr>
<td>dns_server</td>
<td>This is a required directive. It identifies the DNS server for Content Gateway to use with the destination specifier. You can specify a port using a colon (:). If you do not specify a port, 53 is used. You can specify multiple DNS servers separated by spaces or by semicolons (;). You must specify the domains using IP addresses in dot notation.</td>
</tr>
<tr>
<td>def_domain</td>
<td>A valid domain name. This optional directive specifies the default domain name to use for resolving hosts. Only one entry is allowed. If you do not provide the default domain, the system determines its value from /etc/resolv.conf.</td>
</tr>
<tr>
<td>search_list</td>
<td>A list of domains separated by spaces or semicolons (;). This specifies the domain search order. If you do not provide the search list, the system determines the value from /etc/resolv.conf.</td>
</tr>
</tbody>
</table>

**Examples**

Consider the following DNS server selection specifications:

```
dest_domain=internal.company.com named=255.255.255.255:212
255.255.255.254 def_domain=company.com
search_list=company.com company1.com
dest_domain=!internal.company.com named=255.255.255.253
```

Now consider the following two requests:

- **http://minstar.internal.company.com**
  
  This request matches the first line and select DNS server 255.255.255.255 on port 212. All resolver requests will use **company.com** as the default domain, and **company.com** and **company1.com** as the set of domains to search first.

- **http://www.microsoft.com**
  
  This request will match the second line. Therefore, Content Gateway selects DNS server 255.255.255.253. No **def_domain** or **search_list** was supplied, so Content Gateway retrieves this information from /etc/resolv.conf.
storage.config

The storage.config file lists all the files, directories, or hard disk partitions that make up the cache.

**Important**
After you modify this file, you must restart the proxy.

**Format**

The format of the storage.config file is:

```
pathname size
```

where `pathname` is the name of a partition, directory, or file, and `size` is the size of the named partition, directory, or file, in bytes. You must specify a size for directories or files. For raw partitions, size specification is optional.

You can use any partition of any size. For best performance, the following guidelines are recommended:

- Use raw disk partitions.
- For each disk, make all partitions the same size.
- For each node, use the same number of partitions on all disks.

Specify pathnames according to your operating system requirements. See the following examples.

**Important**
In the storage.config file, a formatted or raw disk must be at least 2 GB. The recommended disk cache size is 147 GB.

update.config

The update.config file controls how Websense Content Gateway performs a scheduled update of specific local cache content. The file contains a list of URLs specifying objects that you want to schedule for update.
A scheduled update performs a local HTTP GET on the objects at the specific time or interval. You can control the following parameters for each specified object:

- The URL
- URL-specific request headers, which overrides the default
- The update time and interval
- The recursion depth

**Important**

After you modify this file, run `content_line -x` from the Content Gateway **bin** directory (/opt/WCG/bin) to apply the changes. When you apply the changes to a node in a cluster, Content Gateway applies the changes to all nodes in the cluster.

Scheduled update supports the following tag/attribute pairs when performing recursive URL updates:

- `<a href=" ">
- `<img src=" ">
- `<img href=" ">
- `<body background=" ">
- `<frame src=" ">
- `<iframe src=" ">
- `<fig src=" ">
- `<overlay src=" ">
- `<applet code=" ">
- `<script src=" ">
- `<embed src=" ">
- `<bgsound src=" ">
- `<area href=" ">
- `<base href=" ">
- `<meta content=" ">

Scheduled update is designed to operate on URL sets consisting of hundreds of input URLs (expanded to thousands when recursive URLs are included); it is not intended to operate on massively large URL sets, such as those used by Internet crawlers.

**Format**

Each line in the `update.config` file uses the following format:

```
URL\request_headers\offset_hour\interval\recursion_depth\n```

Online Help ▶ 495
The following table describes each field.

<table>
<thead>
<tr>
<th>Field</th>
<th>Allowed Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>URL</td>
<td>HTTP and FTP-based URLs.</td>
</tr>
<tr>
<td>request_headers</td>
<td>(Optional.) A list of headers (separated by semi-colons) passed in each GET request. You can define any request header that conforms to the HTTP specification. The default is no request header.</td>
</tr>
<tr>
<td>offset_hour</td>
<td>The base hour used to derive the update periods. The range is 00-23 hours.</td>
</tr>
<tr>
<td>interval</td>
<td>The interval, in seconds, at which updates should occur, starting at offset hour.</td>
</tr>
<tr>
<td>recursion_depth</td>
<td>The depth to which referenced URLs are recursively updated, starting at the given URL.</td>
</tr>
</tbody>
</table>

Examples

The following example illustrates an HTTP scheduled update:

http://www.company.com/User-Agent: noname user agent\13\3600\5\1

This example specifies the URL and request headers, an offset hour of 13 (1 p.m.), an interval of one hour, and a recursion depth of 5. This would result in updates at 13:00, 14:00, 15:00, and so on. To schedule for an update to occur only once a day, use an interval value of 24 hours x 60 minutes x 60 seconds = 86400.

The following example illustrates an FTP scheduled update:

ftp://anonymous@ftp.company.com/pub/misc/test_file.cc\18\120\0\1

This example specifies the FTP request, an offset hour of 18 (6 p.m.), and an interval of every two minutes. The user must be *anonymous* and the password must be specified by the variable proxy.config.http.ftp.anonymous_passwd in the records.config file.

wccp.config

The `wccp.config` file stores the WCCP configuration information and service group settings. When WCCP is enabled on the Configure > MyProxy > Basic page, WCCP service group settings can be configured on the Configure > Networking > WCCP page. Service groups must be defined if WCCP is to be used for transparent redirection to Content Gateway. For more information, see *Transparent interception with WCCP v2 devices*, page 50.
Websense Content Gateway error messages

The following table lists messages that can appear in system log files. This list is not exhaustive; it describes warning messages that can occur and might require your attention. For information about warning messages not included in the list below, go to www.websense.com and then navigate to Support and Knowledge Base.

Process fatal errors

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept port is not between 1 and 65535. Please check configuration.</td>
<td>The port specified in the records.config file that accepts incoming HTTP requests is not valid.</td>
</tr>
<tr>
<td>Ftp accept port is not between 1 and 65535.</td>
<td>The port specified in the records.config file that accepts incoming FTP requests is not valid.</td>
</tr>
<tr>
<td>Self loop is detected in parent proxy configuration.</td>
<td>The name and port of the parent proxy are the same as that of Content Gateway. This creates a loop when Content Gateway attempts to send requests to the parent proxy.</td>
</tr>
<tr>
<td>Could not open the ARM device</td>
<td>The ARM failed to load. The most common reason for this is that the host system has an incompatible system kernel. To see if the ARM is loaded, run: /sbin/lsmod</td>
</tr>
</tbody>
</table>
Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>content_manager failed to set cluster IP address</td>
<td>The content_manager process could not set the cluster IP address. Check the cluster IP address. Make sure that it is not already used by another device in the network.</td>
</tr>
<tr>
<td>Unable to initialize storage. (Re)Configuration required.</td>
<td>Cache initialization failed during startup. The cache configuration should be checked and configured or reconfigured.</td>
</tr>
</tbody>
</table>

Warnings

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logfile error: error_number</td>
<td>Generic logging error.</td>
</tr>
<tr>
<td>Bad cluster major version range version1-version2 for node IP address connect failed</td>
<td>Incompatible software versions causing a problem.</td>
</tr>
<tr>
<td>can’t open config file filename for reading custom formats</td>
<td>Custom logging is enabled, but Content Gateway cannot find the logs.config file.</td>
</tr>
<tr>
<td>connect by disallowed client IP address, closing connection</td>
<td>The specified client is not allowed to connect to Content Gateway. The client IP address is not listed in the ip_allow.config file.</td>
</tr>
<tr>
<td>Could not rename log filename to rolled filename</td>
<td>System error when renaming log file during roll.</td>
</tr>
<tr>
<td>Did this_amount of backup still to do remaining_amount</td>
<td>Congestion is approaching.</td>
</tr>
<tr>
<td>Different clustering minor versions version 1, version 2 for node IP address continuing</td>
<td>Incompatible software versions causing a problem.</td>
</tr>
<tr>
<td>log format symbol symbol_name not found</td>
<td>Custom log format references a field symbol that does not exist. See Event Logging Formats, page 383.</td>
</tr>
<tr>
<td>missing field for field marker</td>
<td>Error reading a log buffer.</td>
</tr>
<tr>
<td>Unable to accept cluster connections on port: cluster_port_number</td>
<td>Contact Websense Technical Support. Go to www.websense.com/support/ for Technical Support contact information</td>
</tr>
<tr>
<td>Unable to open log file filename, errno=error_number</td>
<td>Cannot open the log file.</td>
</tr>
<tr>
<td>Error accessing disk disk_name</td>
<td>Content Gateway might have a cache read problem. You might have to replace the disk.</td>
</tr>
<tr>
<td>Too many errors accessing disk disk_name: declaring disk bad</td>
<td>Content Gateway is not using the cache disk because it encountered too many errors. The disk might be corrupt and might have to be replaced.</td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>No cache disks specified in <code>storage.config</code> file: cache disabled</td>
<td>The Content Gateway <code>storage.config</code> file does not list any cache disks. Content Gateway is running in proxy-only mode. You must add the disks you want to use for the cache to the <code>storage.config</code> file (see <code>storage.config</code>, page 494).</td>
</tr>
<tr>
<td>All disks are bad, cache disabled</td>
<td>There is a problem with the cache disk(s) and caching has been disabled. Please verify that the cache disks are working and have been properly formatted for caching. See Configuring the Cache, page 99.</td>
</tr>
<tr>
<td>Missing DC parameter <code><missing_param></code> on auth.profile line</td>
<td>A required parameter was not specified. Please provide a value for the missing parameter.</td>
</tr>
<tr>
<td>Bad DC parameter <code><bad_param></code> - <code><dc_name></code></td>
<td>A specified Domain Controller parameter is invalid. Please enter a valid value for the cited parameter.</td>
</tr>
<tr>
<td>[ParentSelection] <code><error_description></code> for default parent proxy</td>
<td>Proxy chaining is not working due to misconfiguration of the parent proxy in the child proxy. Please check the chaining configuration of parent proxy values in the child proxy.</td>
</tr>
<tr>
<td>WCCP2: Cannot find Interface name. Please check that the variable proxy.local.wccp2.ethernet_interface is set correctly</td>
<td>No value is specified for the WCCP interface. In the Content Gateway manager, check Configure > Networking > WCCP > General, or assign a value to proxy.local.wccp2.ethernet_interface in records.config.</td>
</tr>
<tr>
<td>ARMManager: Unable to read network interface configuration</td>
<td>There is a format or configuration error in <code>ipnat.conf</code>. In the Content Gateway manager, go to Configure > Networking > ARM > General and click Edit File to view and correct <code>ipnat.conf</code>.</td>
</tr>
</tbody>
</table>
The following table describes alarm messages that you may see in the Content Gateway manager.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Content Gateway subscription has expired.</td>
<td>Please contact your Websense customer service representative or Technical Support for assistance.</td>
</tr>
<tr>
<td>Content Gateway subscription download failed.</td>
<td>Content Gateway was unable to connect to the download server to verify the subscription information. Please check your connection to the download server.</td>
</tr>
<tr>
<td>After several attempts, Content Gateway failed to connect to the Websense Database Download Service. Please troubleshoot the connection.</td>
<td>Verify that Content Gateway is able to access the Internet. Check firewall and upstream proxy server settings that might prevent Content Gateway from connecting to the download server.</td>
</tr>
<tr>
<td>After several attempts, Content Gateway failed to connect to the Policy Server. Please troubleshoot the connection.</td>
<td>Verify that there is network connectivity between Content Gateway and the Web module of TRITON AP-WEB. Sometimes firewall settings block connectivity. Also confirm that the Policy Server service is running on the Web module host.</td>
</tr>
<tr>
<td>After several attempts, Content Gateway failed to connect to the Policy Broker. Please troubleshoot the connection.</td>
<td>Verify that there is network connectivity between Content Gateway and the Web module of TRITON AP-WEB. Sometimes firewall settings block connectivity. Also confirm that the Policy Broker service is running on the Web module host.</td>
</tr>
<tr>
<td>After several attempts, Content Gateway failed to connect to the Filter service. Please troubleshoot the connection.</td>
<td>Verify that there is network connectivity between Content Gateway and the Web module of TRITON AP-WEB. Sometimes firewall settings block connectivity. Also confirm that the Filter Service process is running on the Web module host.</td>
</tr>
<tr>
<td>Communication with the analytics engine has failed. Please restart Content Gateway.</td>
<td>Restart Content Gateway.</td>
</tr>
<tr>
<td>SSL decryption has been disabled due to an internal error, please restart Content Gateway.</td>
<td>There was a fatal error in SSL Support. Please restart Content Gateway.</td>
</tr>
<tr>
<td>[Rollback::Rollback] Config file is read-only: filename</td>
<td>Go to the Content Gateway config directory (default location is /opt/WCG/config) and check the indicated file permissions; change them if necessary.</td>
</tr>
<tr>
<td>Message</td>
<td>Description/Solution</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>[Rollback::Rollback] Unable to read or write config file filename</td>
<td>Go to the Content Gateway config directory and make sure the indicated file exists. Check its permissions and change them if necessary.</td>
</tr>
<tr>
<td>[Content Gateway Manager] Configuration File Update Failed error_number</td>
<td>Go to the Content Gateway config directory and check the indicated file permissions; change them if necessary.</td>
</tr>
<tr>
<td>Access logging suspended - configured space allocation exhausted.</td>
<td>The space allocated to the event log files is full. You must either increase the space or delete some log files to enable access logging to continue. To prevent this from happening, consider rolling log files more frequently and enabling the autodelete feature. See Rolling event log files, page 253.</td>
</tr>
<tr>
<td>Access logging suspended - no more space on the logging partition.</td>
<td>The entire partition containing the event logs is full. You must delete or move some log files to enable access logging to continue. To prevent this from happening, consider rolling log files more frequently and enabling the autodelete feature. See Rolling event log files, page 253.</td>
</tr>
<tr>
<td>Created zero length place holder for config file filename</td>
<td>Go to the Content Gateway config directory and check the indicated file. If it is indeed zero in length, use a backup copy of the configuration file.</td>
</tr>
<tr>
<td>Content Gateway can’t open filename for reading custom formats</td>
<td>Make sure that the proxy.config.log2.config_file variable in the records.config file contains the correct path to the custom log configuration file (the default is logging/logs.config).</td>
</tr>
<tr>
<td>Content Gateway could not open logfile filename</td>
<td>Check permissions for the indicated file and the logging directory.</td>
</tr>
<tr>
<td>Content Gateway failed to parse line line_number of the logging config file filename</td>
<td>Check your custom log configuration file. There may be syntax errors. See Custom logging fields, page 383, for correct custom log format fields.</td>
</tr>
<tr>
<td>vip_config binary is not setuid root, manager will be unable to enable virtual ip addresses</td>
<td>The content_manager process is not able to set virtual IP addresses. You must setuid root for the vip_config file in the Content Gateway bin directory.</td>
</tr>
<tr>
<td>Content Gateway cannot parse the ICAP URI. Please ensure that the URI is entered correctly in Content Gateway Manager or in the proxy.config.icap.ICAPUri configuration variable.</td>
<td>The Universal Resource Identifier (URI) is not in the correct format. Enter the URI as follows: icap://hostname:port/path See Working With Web DLP, page 129 for additional details on the format of the URI.</td>
</tr>
</tbody>
</table>
Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Description/Solution</th>
</tr>
</thead>
</table>
| The specified ICAP server does not have a DNS entry. Please ensure | The hostname in the `records.config` file does not match any entries in the DNS. Ensure that the name of a valid TRITON AP-DATA server is entered correctly in the Content Gateway manager.
| that a valid DSS hostname is entered correctly in Content Gateway | See *Working With Web DLP*, page 129 for information on the format of the URI. |
| Manager or in the `proxy.config.icap.ICAPUri` configuration variable. | |
| Content Gateway is not able to communicate with the DSS server. Please | Ensure that the TRITON Management server is up and running, and accepting connections on the port specified in the `proxy.config.icap.ICAPUri` variable.
| try again. | Contact your TRITON AP-DATA administrator if this message persists. |
| Domain controller `domain_controller_name:port` is down. | The named NTLM domain controller is not responding to requests and has been marked as down. Investigation the status of the domain controller. |
| Windows domain [domain name] unreachable or bad membership status | This alarm can indicate any of the following: |
| | 1. The Active Directory is unreachable. The AD server is either down or there is a network connectivity problem. |
| | 2. The AD is reachable, but there is a configuration problem that prevents it from communicating with Content Gateway. For example, the alarm is generated if the AD has multiple Sites and the subnet that Content Gateway resides on has not been added to one of them. |
| The Scanning Data Files Update option (My Proxy > Subscription) is | This alarm is a reminder that downloads of the security scanning data files used by Content Gateway analysis has been suspended. It is recommended that you not clear this alarm until the delay time has been reset. |
| set to ‘suspend updates’. To get the best Websense protection, set it | |
| to ‘no delay’, or, on a backup system, use a time-based option. | |

HTML messages sent to clients

Websense Content Gateway returns detailed error messages to browser clients when there are problems with the HTTP transactions requested by the browser. These response messages correspond to standard HTTP response codes, but provide more information. A list of the more frequently encountered HTTP response codes is provided in *Standard HTTP response messages, page 508*. You can customize the response messages.
The following table lists the Content Gateway hard-coded HTTP messages, their corresponding HTTP response codes, and their corresponding customizable files.

<table>
<thead>
<tr>
<th>Title</th>
<th>HTTP Code</th>
<th>Description</th>
<th>Customizable Filename</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Denied</td>
<td>403</td>
<td>You are not allowed to access the document at location URL.</td>
<td>access#denied</td>
</tr>
<tr>
<td>Bad HTTP request for FTP Object</td>
<td>400</td>
<td>Bad HTTP request for FTP object.</td>
<td>ftp#bad_request</td>
</tr>
<tr>
<td>Cache Read Error</td>
<td>500</td>
<td>Error reading from cache. Please retry request.</td>
<td>cache#read_error</td>
</tr>
<tr>
<td>Connection Timed Out</td>
<td>504</td>
<td>Server has not sent any data for too long a time.</td>
<td>timeout#inactivity</td>
</tr>
<tr>
<td>Content Length Required</td>
<td>400</td>
<td>Could not process this request because no Content-Length was specified.</td>
<td>request#no_content_length</td>
</tr>
<tr>
<td>Cycle Detected</td>
<td>400</td>
<td>Your request is prohibited because it would cause an HTTP proxy cycle.</td>
<td>request#cycle_detected</td>
</tr>
<tr>
<td>Forbidden</td>
<td>403</td>
<td>port_number is not an allowed port for SSL connections. (You have made a request for a secure SSL connection to a forbidden port number.)</td>
<td>access#ssl_forbidden</td>
</tr>
<tr>
<td>FTP Authentication Required</td>
<td>401</td>
<td>You need to specify a correct user name and password to access the requested FTP document URL.</td>
<td>ftp#auth_required</td>
</tr>
<tr>
<td>FTP Connection Failed</td>
<td>502</td>
<td>Could not connect to the server server_name.</td>
<td>connect#failed_connect</td>
</tr>
<tr>
<td>FTP Error</td>
<td>502</td>
<td>The FTP server server_name returned an error. The request for document URL failed.</td>
<td>ftp#error</td>
</tr>
<tr>
<td>Title</td>
<td>HTTP Code</td>
<td>Description</td>
<td>Customizable Filename</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Host Header Required</td>
<td>400</td>
<td>An attempt was made to transparently proxy your request, but this attempt failed because your browser did not send an HTTP Host header. Manually configure your browser to use <code>https://proxy_name:proxy_port</code> as an HTTP proxy. See your browser’s documentation for details. Alternatively, end users can upgrade to a browser that supports the HTTP Host header field.</td>
<td>interception#no_host</td>
</tr>
<tr>
<td>Host Header Required</td>
<td>400</td>
<td>Your browser did not send a Host HTTP header field and therefore the virtual host being requested could not be determined. To access this Web site correctly, you will need to upgrade to a browser that supports the HTTP Host header field.</td>
<td>request#no_host</td>
</tr>
<tr>
<td>HTTP Version Not Supported</td>
<td>505</td>
<td>The origin server <code>server_name</code> is using an unsupported version of the HTTP protocol.</td>
<td>request#bad_version</td>
</tr>
<tr>
<td>Invalid HTTP Request</td>
<td>400</td>
<td>Could not process this <code>client_request</code> HTTP method request for <code>URL</code>.</td>
<td>request#syntax_error</td>
</tr>
<tr>
<td>Invalid HTTP Response</td>
<td>502</td>
<td>The host <code>server_name</code> did not return the document <code>URL</code> correctly.</td>
<td>response#bad_response</td>
</tr>
<tr>
<td>Malformed Server Response</td>
<td>502</td>
<td>The host <code>server_name</code> did not return the document <code>URL</code> correctly.</td>
<td>response#bad_response</td>
</tr>
<tr>
<td>Malformed Server Response</td>
<td>502</td>
<td>The host <code>server_name</code> did not return the document <code>URL</code> correctly.</td>
<td>response#bad_response</td>
</tr>
<tr>
<td>Maximum Transaction Time</td>
<td>504</td>
<td>Too much time has passed transmitting document <code>URL</code>.</td>
<td>timeout#activity</td>
</tr>
<tr>
<td>exceeded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Response Header From Server</td>
<td>502</td>
<td>The host <code>server_name</code> did not return the document <code>URL</code> correctly.</td>
<td>response#bad_response</td>
</tr>
<tr>
<td>Title</td>
<td>HTTP Code</td>
<td>Description</td>
<td>Customizable Filename</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>---</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Not Cached</td>
<td>504</td>
<td>This document was not available in the cache, and you (the client) accept cached copies only.</td>
<td>cache#not_in_cache</td>
</tr>
<tr>
<td>Not Found on Accelerator</td>
<td>404</td>
<td>The request for URL on host <code>server_name</code> was not found. Check the location and try again.</td>
<td>urlrouting#no_mapping</td>
</tr>
<tr>
<td>NULL</td>
<td>502</td>
<td>The host <code>hostname</code> did not return the document URL correctly.</td>
<td>response#bad_response</td>
</tr>
<tr>
<td>Proxy Authentication</td>
<td>407</td>
<td>Please log in with user name and password.</td>
<td>access#proxy_auth_required</td>
</tr>
<tr>
<td>Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Hangup</td>
<td>502</td>
<td>The server <code>hostname</code> closed the connection before the transaction was completed.</td>
<td>connect#hangup</td>
</tr>
<tr>
<td>Temporarily Moved</td>
<td>302</td>
<td>The document you requested, URL, has moved to a new location. The new location is <code>new_URL</code>.</td>
<td>redirect#moved_temporarily</td>
</tr>
<tr>
<td>Transcoding Not Available</td>
<td>406</td>
<td>Unable to provide the document URL in the format requested by your browser.</td>
<td>transcoding#unsupported</td>
</tr>
<tr>
<td>Tunnel Connection Failed</td>
<td>502</td>
<td>Could not connect to the server <code>hostname</code>.</td>
<td>connect#failed_connect</td>
</tr>
<tr>
<td>Unknown Error</td>
<td>502</td>
<td>The host <code>hostname</code> did not return the document URL correctly.</td>
<td>response#bad_response</td>
</tr>
<tr>
<td>Unknown Host</td>
<td>500</td>
<td>Unable to locate the server named <code>hostname</code>. The server does not have a DNS entry. Perhaps there is a misspelling in the server name or the server no longer exists. Double-check the name and try again.</td>
<td>connect#dns_failed</td>
</tr>
<tr>
<td>Unsupported URL Scheme</td>
<td>400</td>
<td>Cannot perform your request for the document URL because the protocol scheme is unknown.</td>
<td>request#scheme_unsupported</td>
</tr>
</tbody>
</table>
The following standard HTTP response messages are provided for your information. For a more complete list, see the *Hypertext Transfer Protocol — HTTP/1.1 Specification*.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>OK</td>
</tr>
<tr>
<td>202</td>
<td>Accepted</td>
</tr>
<tr>
<td>204</td>
<td>No Content</td>
</tr>
<tr>
<td>206</td>
<td>Partial Content</td>
</tr>
<tr>
<td>300</td>
<td>Multiple Choices</td>
</tr>
<tr>
<td>301</td>
<td>Moved Permanently</td>
</tr>
<tr>
<td>302</td>
<td>Found</td>
</tr>
<tr>
<td>303</td>
<td>See Other</td>
</tr>
<tr>
<td>304</td>
<td>Not Modified</td>
</tr>
<tr>
<td>400</td>
<td>Bad Request</td>
</tr>
<tr>
<td>401</td>
<td>Unauthorized; retry</td>
</tr>
<tr>
<td>403</td>
<td>Forbidden</td>
</tr>
<tr>
<td>404</td>
<td>Not Found</td>
</tr>
<tr>
<td>405</td>
<td>Method Not Allowed</td>
</tr>
<tr>
<td>406</td>
<td>Not acceptable</td>
</tr>
<tr>
<td>408</td>
<td>Request Timeout</td>
</tr>
<tr>
<td>500</td>
<td>Internal server error</td>
</tr>
<tr>
<td>501</td>
<td>Not Implemented</td>
</tr>
<tr>
<td>502</td>
<td>Bad Gateway</td>
</tr>
<tr>
<td>504</td>
<td>Gateway Timeout</td>
</tr>
</tbody>
</table>