
Reference Guide
Revision A

McAfee Next Generation Firewall 5.10.0
SMC API

This guide gives an overview of the Security Management Center (SMC) application programming
interface (API). It describes how to enable the SMC API and provides examples of its use. The target
audience for this guide includes system administrators and developers.

Introduction
The SMC is part of the McAfee

®

 Next Generation Firewall (McAfee NGFW) solution. You can access the
SMC in two ways: through the Management Client and an API. This guide describes how to configure
the SMC API.

The SMC API provides functions for adding, editing, and deleting elements in the Management Server
database.

General use cases that are supported through the SMC API include the following:

• Adding, editing, and removing simple elements (such as Hosts, Networks, and Address Ranges)

• Adding, editing, and removing Access rules, NAT rules, and Inspection rules

• Uploading a policy to an engine

• Retrieving or changing the routing of an engine

• Configuring VPNs

Although the SMC API follows the architectural style of RESTful web APIs, this guide introduces only
the basic concepts. For more information, see:

• Representational state transfer — http://en.wikipedia.org/wiki/Representational_state_transfer
and the linked content

• Resources and actions — Available in the complete generated API documentation in the
documentation folder of the SMC installation files

1

http://en.wikipedia.org/wiki/Representational_state_transfer

Supported use cases
These scenarios highlight the ways you can use the SMC API.

• Integrate the SMC with third-party policy management and risk management applications. The
SMC API is already used by vendors like Tufin and FireMon.

• Provide the necessary tools for managed security service providers (MSSPs) to include functions
related to Management Servers and Log Servers on their own web portals.

• Automate frequent tasks through scripting without administrators manually configuring them in the
Management Client.

• Develop an alternative user interface for managing Management Servers and Log Servers.

User session identification
The SMC API supports two methods for associating all requests with a single user between the logon
and logoff actions.

• Cookies — The API Client sends back in each request all (non-expired) cookies that the server
sent.

• SSL Sessions — Sessions are tracked by the server based on SSL connections.

Cookies are the default. If you want to use SSL Sessions instead, you must enable it.

To save server resources, clients should log off at the end of the session.

See also
Enable SMC API on page 3

Adjust the HTTP session inactivity timeout
You can change the HTTP session inactivity timeout.

By default, the HTTP session inactivity timeout is 30 minutes. After 30 minutes of inactivity, the SMC
API prompts you to log on again to be able to execute any new HTTP requests.

Task
1 On the computer where the Management Server is installed, browse to the <installation

directory>/data directory.

2 Edit the SGConfiguration.txt file and add this parameter: WEB_SERVER_SESSION_TIMEOUT=<time
in minutes>.

3 Save the SGConfiguration.txt file.

Backward compatibility
Backward compatibility is guaranteed to the previous major SMC release only. For example, SMC 5.10
provides access to both the 5.9 and 5.10 versions of the SMC API, from two version-specific URIs.

2

Configure SMC API
The Application Programming Interface (API) of SMC allows external applications, such as Intel
Security Controller, to connect with the SMC.

If there is a firewall between SMC and Intel Security Controller or other applications, make sure that
there is an Access rule to allow communication.

The SMC API can be used to run actions remotely using an external application or script. For more
information about using SMC API, see the SMC API Reference Guide.

Tasks
• Create TLS credentials for SMC API Clients on page 3

The SMC API Client requires credentials to connect with the Management Server.

• Enable SMC API on page 3
To allow other applications to connect using the SMC API, enable SMC API on the
Management Server.

• Create an API Client element on page 4
Intel Security Controller and other applications use API clients to connect to SMC.

Create TLS credentials for SMC API Clients
The SMC API Client requires credentials to connect with the Management Server.

You can import the existing private key and certificate if they are available.

Task
For details about product features, usage, and best practices, click ? or Help.

1 In the Management Client, select Configuration | Configuration | Security Engine.

2 Select Other Elements | Engine Properties | Certificates | Pending Certificate Requests.

3 Right-click Pending Certificate Requests and select New Pending Certificate Request.

4 Complete the certificate request details.

a Enter a name and add "REQ" or "request" at the end.

b In the Common Name field, enter the IP address or domain name of SMC.

c Complete the remaining fields as needed.

d Click OK.

5 Right-click the completed request and select Self Sign.

6 Enter the name from the previous step, removing "REQ" or "request" from the end.

7 Click OK.

8 When prompted, remove the pending Certificate Request.

The TLS Credentials element is added to Other Elements | Engine Properties | Certificates | TLS Credentials.

Enable SMC API
To allow other applications to connect using the SMC API, enable SMC API on the Management Server.

3

Task
For details about product features, usage, and best practices, click ? or Help.

1 In the Management Client, from the System Status view, right-click the Management Server and select
Properties.

2 Click the SMC API tab, then select Enable.

3 (Optional) In the Host Name field, enter the name that the SMC API service uses.

4 Make sure that the listening port is set to the default of 8082 on the Management Server.

5 If the Management Server has several IP addresses and you want to restrict access to one, enter
the IP address in the Listen Only on Address field.

6 Click Select and select the TLS Credentials element.

7 Click OK.

Create an API Client element
Intel Security Controller and other applications use API clients to connect to SMC.

Before you begin
SMC API must be enabled for the Management Server.

Task
For details about product features, usage, and best practices, click ? or Help.

1 In the Management Client, select Configuration | Configuration | Administration | Access Rights.

2 Right-click Access Rights and select New | API Client.

3 In the Name field, enter a unique name for the API Client.

4 Use the initial authentication key or click Generate Authentication Key to generate a new one.

A random 24-character alphanumeric authentication key is automatically generated.

This key appears only once, so be sure to record it. The API Client uses the authentication key to log
on to SMC API.

5 Click the Permissions tab.

6 Select the permissions for actions in the SMC API.

For Intel Security Controller, select Unrestricted Permissions (Superuser).

7 Click OK.

Working with RESTful principles
The SMC API is a RESTful API that includes these features.

• The API is strictly based on the HTTP protocol and is platform-independent.

• Each resource is identified by a unique URI, which is opaque to the API clients.

4

• URIs and actions that can be performed on resources are accessible through hyperlinks.

• The SMC API supports multiple representations for each resource. Currently, only JSON and XML,
or plain text when it is understandable, are supported.

• ETags are used for cacheability and conditional updates.

Requests
There are several types of requests and they affect resources in different ways.

You can perform these actions:

• Create resources by using POST requests on the URI of the collection that lists all elements. The
URI of the created resource is returned in the Location header field.

• Read resources by using GET requests. To save network bandwidth and avoid transferring the
complete body in the response, HEAD requests and ETags are supported.

• Update resources by using PUT requests. All updates are conditional and rely on ETags.

• Delete resources by using DELETE requests.

• Trigger actions such as Policy Uploads by using POST requests.

Only GET, HEAD, and OPTIONS requests are safe and do not have side effects. PUT and DELETE
requests have no additional effect if they are called more than once with the same parameters, but
McAfee recommends avoiding redundant requests. POST requests might have additional effects if called
more than once with the same input parameters; clients are responsible for avoiding multiple POST
requests.

Status codes and error messages
When requests are made, they return HTTP response status codes.

For more information, the HTTP response status codes follow the principles outlined in http://
en.wikipedia.org/wiki/List_of_HTTP_status_codes.

For an error message, the server also attempts to send relevant information in the response body.

ETags
When a GET request is made, it returns an ETag in the header that verifies the version of the returned
data.

ETags are used for:

• Caching purposes — When performing GET requests, the client sends back the ETags of the last
fetched data in an If-Match header. If the ETag has not changed, the server returns a 304 HTTP
response status code (Not Modified).

• Conditional updates — Whenever a client attempts to update an element, an If-Match header
must be sent with the ETag of the last retrieved data. If this data is changed in the meantime, the
server returns a 412 HTTP response status code (Precondition Failed).

The concurrency of the HTTP requests is based on the same model as the concurrency of the
heavyweight clients, so several HTTP sessions can be handled at the same time by the API server. For
this reason, the ETag header is mandatory for all PUT requests. It ensures that you are updating the
latest version of the element.

For more information, see http://en.wikipedia.org/wiki/HTTP_ETag.

5

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/HTTP_ETag

304 status code handling
The SMC API supports the 304 Not Modified Error status code. This response indicates that the
resource has not been modified since the version specified by the If-Modified-Since or If-None-Match
request headers.

There is no need to retransmit the resource because the requested element has not been modified and
the client still has a previously downloaded copy. For example, if you add your ETag element version to
the ETag parameter in the header of your GET request, the SMC API returns a 304 status code instead
of the element content. This response indicates that your downloaded copy of the element is the same
as the requested element.

Opaque URIs, URI discovery, and hypermedia
All URIs must be considered opaque values; clients should not have to construct URIs by
concatenating substrings.

All URIs must be recursively discovered from:

• The API entry-point URI, as defined in the SMC API configuration

• Top-level service URIs

• The top-level lists of elements

• Links to other resources that are mentioned in these elements

• The action links identified by the verbs (for example, upload) that are mentioned in these elements

Some URIs support or mandate the use of additional query parameters, for example, for filtering
purposes.

Body content and query parameters
REST operations contain specific content or support additional parameters.

• Create and update operations require content in the body of the request.

• Read and delete operations on a single element do not require any additional content.

• Element listing operations support filtering arguments as query parameters.

• Some action URIs require additional parameters.

Entry point structure
Each entry point contains an operation verb, the HTTP method, and other information to direct the
user to a URI.

Verbs
Verbs represent keywords for specific element operations.

Verbs are listed in the XML/JSON element description as a link entry.

6

Self verbs
The self verb is included in each element and is based on REST philosophy. The self verb allows you to
retrieve the API URI for the current element.

Example: For a host, the self verb might look like the following.

“link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/host/86",
 "method": "GET",
 "rel": "self",
 "type": "host"
 }
]

A link entry has the following structure:

• href: The API's URI to the associated verb

• method: The REST HTTP method to execute on the API's URI

• rel: The keyword that is preserved beyond SMC versions. It represents the verb

• type: Optional information about the return type

Installing a policy from a Policy element
The upload verb is present on several Policy elements, such as fw_policy.

Example: The JSON description of a policy refers to the verb in this way:

"link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/fw_policy/56/upload",
 "method": "POST",
 "rel": "upload"
 },
 …
]

This verb can be found in each policy type.

Example: Here it is shown in the Firewall Policy. It presents a query parameter — a filter that can be
uploaded on a specific engine (?filter=TheEngineName).

This verb starts the upload of the specific policy on the specified engine. It returns a 200 HTTP
response status code and an upload status description similar to the following:

{
 "follower": "http://localhost:8082/5.10/elements/fw_policy/56/upload/
NWYyMDBiOTA4ZTY3NDM0ZTo0YzM2ZTg5MDoxM2ZlNzhhMDZlZTotN2VhZA==",
 "href": "http://localhost:8082/5.10/elements/fw_policy/56",
 "in_progress": true,
 "last_message": "",
 "success": true
}

The upload status has the following structure:

• follower: The API’s URI to the current upload status

• href: The source of the upload (in this example, the policy)

• in_progress: A flag that shows whether the upload is still in progress

7

• last_message: The last upload status message

• success: A flag that shows whether the current upload has succeeded

Uploading the engine configuration from an engine element
The upload verb is present on each engine element, such as single_fw.

Example: the JSON description of an engine refers to the verb in the following way:

"link":
 [
 …
 {
 "href": "http://localhost:8082/5.10/elements/single_fw/1552/upload",
 "method": "POST",
 "rel": "upload"
 },
 …
],

This verb can be found in each engine type. In this example, it is shown in a Single Firewall. It
presents a query parameter — a filter that can be uploaded on a specific policy (?
filter=ThePolicyName).

This verb starts the upload on the specific engine and the specified policy. It returns a 200 HTTP
response status code and a similar upload status description as for the policy upload.

Refreshing the engine configuration from an engine element
You can use the refresh verb to refresh the policy from engine elements.

Example: The JSON description of an engine refers to the verb in the following way:

"link":
 [
 …
 {
 "href": "http://localhost:8082/5.10/elements/single_fw/1552/refresh",
 "method": "POST",
 "rel": "refresh"
 },
 …
],

This verb can be found in each engine type. In this example, it is shown in a Single Firewall.

This verb starts the policy refresh of the specific engine if a policy has already been installed on the
engine. It returns a 200 HTTP response status code and a similar upload status description as for the
policy upload.

API discovery
To ease migration during major version upgrades, it is preferable to discover the API starting from an
entry-point rather than to define all URIs.

Verbs do not change in major version upgrades but URIs might change.

The execution of a GET request on this URI returns a list of available functions.

GET https://[server]:[port]/[version]/api

8

Example: GET https://localhost:8082/5.10/api

Links
GET 5.10/api allows the discovery of all available entry-points of the API.

The examples in this section show a sample of the HTTP response body in XML and JSON.

The structure of each entry-point is:

• href: The API's URI to the associated entry-point

• method: The REST HTTP method to execute on the API's URI

• rel: The keyword that is preserved beyond SMC versions

For example, for the entry-point host, the API's URI is GET 5.10/elements/host. This means that the
execution of GET 5.10/elements/host returns all defined Host elements in the HTTP response body.

To log in, execute POST 5.10/login.

GET 5.10/api does not give query parameter information. Query parameters are defined in the API
documentation.

The execution of GET 5.10/api with Accept: application/xml returns the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<api>
…
<entry_point href="http://localhost:8082/5.10/elements/host" method="GET" rel="host"/>
<entry_point href="http://localhost:8082/5.10/login" method="POST" rel="login"/>
…
</api>

The execution of GET 5.10/api with Accept: application/json returns the following:

{
"entry_point":
[
…
{
"href": "http://localhost:8082/5.10/elements/host",
"method": "GET",
"rel": "host"
},
{
"href": "http://localhost:8082/5.10/login",
"method": "POST",
"rel": "login"
},
…
]
}

Data element formats
You can retrieve elements from the API in both JSON and XML formats.

The format depends on the Accept HTTP header parameter. Accept: application/json returns
elements in JSON. Accept: application/xml returns elements in XML.

9

Elements include at least the name and comment information. If administrative Domains are used,
elements also include a link to the domains to which the elements belong. In addition, elements
include two flags that show whether they are system and/or read-only. Custom elements have system
and read-only attributes with a false value.

Elements must show the key attribute to be updated. This key attribute allows the API to identify the
element. Elements show their specific attributes and elements as a content description.

By default, all attributes and elements from the data element input that are not supported are
ignored. For this reason, McAfee recommends to first retrieve an existing element in XML or JSON and
then create an element or update the existing element.

For example, the “link” element is always ignored in data element input, the “key” attribute is always
ignored in element creation, and the “system” and “read_only” attributes are always ignored.

JSON
The default data format for the API is JSON.

JSON is based on key/value arrays.

Example: The system "Your-Freedom Servers" host is represented in JSON as follows:

 {
 "address": "66.90.73.46",
 "comment": "Your-Freedom Servers to help blocking access from Your-Freedom clients",
 "key": 86,
"link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/host/86",
 "method": "GET",
 "rel": "self",
 "type": "host"
 }
],
 "name": "Your-Freedom Servers",
 "read_only": true,
 "secondary":
 [
 "193.164.133.72",
 …
],
 "system": true,
 "third_party_monitoring":
 {
 "netflow": false,
 "snmp_trap": false
 }
 }

The system and read-only flags are correctly set to true to indicate that the element in question is a
system/read-only element. The name and comment attributes are correctly shown. In addition, there
is more specific information — the address, the secondary address, and the "third_party_monitoring"
status. Finally, the self verb is shown on the link row.

The primary IP address of this system host is 66.90.73.46. The host also has several secondary IP
addresses, and third-party monitoring is disabled.

For more information about the JSON format, see http://en.wikipedia.org/wiki/Json.

10

http://en.wikipedia.org/wiki/Json

XML
The API supports the XML format. As a standard, the XML format is more verbose than the JSON
format.

The XML format appears more verbose particularly in collections, which present an XML tag grouping
of all XML child elements.

Example: the system "Your-Freedom Servers" host has the following content:

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <host comment="Your-Freedom Servers to help blocking access from Your-Freedom clients"
address="66.90.73.46" key="86" name="Your-Freedom Servers" read_only="true" system="true">
 <links>
 <link href="http://localhost:8082/5.10/elements/host/86" method="GET" rel="self"
type="host"/>
 </links>
 <secondary_addresses>
 <secondary>193.164.133.72</secondary>
 …
 </secondary_addresses>
 <third_party_monitoring netflow="false" snmp_trap="false"/>
 </host>

There are common attributes with the JSON format — name, comment, key, system, and read-only.
The attributes specific to XML are address (XML attribute), secondary_addresses, and
third_party_monitoring (XML children elements).

For more information about the XML format, see http://en.wikipedia.org/wiki/XML.

Working with resource elements
You can manage resource elements with several operations.

Searching for resources
It is possible to filter each element entry point based on a specified part of a name, comment, or IP
address.

For example, all elements can be listed with GET 5.10/elements, so it is possible to search all
elements using the 192.168.* IP address pattern with the following query:

GET 5.10/elements?filter=192.168.*

It is possible to filter specifically by type, for example, to get a list of all hosts with ‘host’ in their
names or in their comments:

GET 5.10/elements/host?filter=host

See also
Specific searches on page 13

11

http://en.wikipedia.org/wiki/XML

Retrieving a resource
You can use a GET request on the specific API Client element's URI to retrieve the content of the
element.

Example: After having retrieved the API's URI for hosts, GET 5.10/elements/host returns the
following:

{
 "result":
 [
 {
 "href": "http://localhost:8082/5.10/elements/host/86",
 "name": "Your-Freedom Servers",
 "type": "host"
 },
 {
 "href": "http://localhost:8082/5.10/elements/host/39",
 "name": "DHCP Broadcast Destination",
 "type": "host"
 },
 …
]
}

The HTTP request lists all defined hosts with their API's URIs. If a specific host is needed, search for
the host by name to get a similar result but only including the particular host.

For example, GET 5.10/elements/host/39 returns a 200 HTTP response status code and the specified
XML/JSON description.

The Accept HTTP request header determines the output format (XML or JSON).

Creating a resource
To create an element, you need the associated element entry-point to execute a POST on it.

The API documentation describes all attributes that are needed for constructing elements in JSON or
XML.

Example: For a host, the POST 5.10/elements/host REST call returns a 201 HTTP response status
code and the created element API's URI in the HTTP header:

{
 "name": "myHost",
 "address": "192.168.0.1"
}

The Content-Type HTTP request header determines the input format (XML or JSON).

Updating a resource
When updating an element, the REST operation is a PUT.

First, you must execute a GET operation on the element to retrieve the ETag from the HTTP header.

After modifying the JSON/XML element content, you can execute a PUT operation with the ETag. The
ETag is required to make sure that the version element is the most current version.

It is important to modify the results of the GET execution to make sure that all attributes are present
for the update (for example, the key).

No merge is done for collections during an update. The API replaces the existing resource with the
new one.

12

If the execution succeeds, it returns a 200 HTTP response status code and, in the HTTP header, the
updated element API's URI.

The Content-Type HTTP request header determines the input format (XML or JSON).

Deleting a resource
When you want to delete an element, the REST operation is a DELETE.
Once you know the element API's URI, you can execute a DELETE operation on it. If the execution
succeeds, it returns a 204 HTTP response status code.

Specific searches
The API makes it possible to execute specific searches, such as unused elements or duplicate IP
addresses.

Searching for unused elements
This operation executes a search for all unused elements.
GET 5.10/elements/search_unused

It is also possible to filter this search by a specific name, comment, or IP address with the query
parameter filter.

Searching for duplicate IP addresses
This operation executes a search for all duplicate IP addresses.
GET 5.10/elements/search_duplicate

It is also possible to filter this search by a specific name, comment, or IP address with the query
parameter filter.

System information
This entry-point operation returns the current SMC version and the last activated Dynamic Update
package.
GET 5.10/system

Examples
As you begin working with the SMC API, see these examples as a reference.
The following configuration is used for these examples:

• The SMC API is configured on port 8082, without host name restrictions, and reached from the
same system as the Management Server.

• The SMC API entry-point URI is http://localhost:8082/api.

• An API Client element with the appropriate permissions and an authentication key of
sqfTm8UCd6havtycRP7P0001 has been defined in the Management Client.

Unless otherwise specified, all examples use JSON representations. The example elements (such as
Helsinki FW and HQ Policy) derive names and properties from the elements that exist in the SMC
installed in demo mode.

13

There are several python example scripts in the samples directory. Explanations of these samples are
provided in the following sections.

Client access and logon
These tasks give the client access to the SMC through the API.

Version-specific entry point
You can create a list of all supported API versions and their entry points.

First, the client must retrieve the version-specific entry-point URI. A GET request on the API
entry-point URI (http://localhost:8082/api) returns an array, named version, which lists all
supported API versions and their entry-point URIs.

GET http://localhost:8082/api
Status Code: 200 OK
{
 "version": [
 {
 "href": "http://localhost:8082/5.9/api",
 "method": "GET",
 "rel": "5.9"
 }
 {
 "href": "http://localhost:8082/5.10/api",
 "method": "GET",
 "rel": "5.10"
 }
]
}

Global services and element URIs
The client must retrieve the login URI, as most services and element URIs require the client to be
properly authenticated.

The version-specific URI declares the URIs for all elements and root services in a list named
entry_point. The login URI is named login:

GET http://localhost:8082/5.10/api
Status Code: 200 OK
{
 "entry_point": [
 {
 "href": "http://localhost:8082/5.10/elements",
 "method": "GET",
 "rel": "elements"
 },
…
 {
 "href": "http://localhost:8082/5.10/elements/host",
 "method": "GET",
 "rel": "host"
 },
…
 {
 "href": "http://localhost:8082/5.10/login",
 "method":"POST",
 "rel": "login

14

 }
]
}

Logging on
Logon is performed with a POST request on the login service URI.

Before using protected services, clients must log on using their authentication key, which is generated
when the API Client element is configured in the Management Client.

The API Client authentication key must be specified in the payload:

• For JSON content type {'authenticationkey':'XXXXXX'}

• For XML content type <login_info authenticationkey='XXXXX'/>

POST http://localhost:8082/5.10/login
Content-type: application/json
Payload : {‘authenticationkey’:’ sqfTm8UCd6havtycRP7P0001’}
Status code: 200 OK

Working with hosts
Use the SMC API to find and configure hosts and Host elements.

Listing the hosts collection
After logon, you can get a list of all defined hosts with this request:
GET http://localhost:8082/5.10/elements/host

This request returns a 200 HTTP response status code and this result:

{
 "result":
 [
 {
 "href": "http://localhost:8082/5.10/elements/host/40",
 "name": "DHCP Broadcast Originator",
 "type": "host"
 },
 {
 "href": "http://localhost:8082/5.10/elements/host/43",
 "name": "IPv6 Unspecified Address",
 "type": "host"
 },
 …
]
}

Filtering elements
Use filters to narrow your element search.

After logon, you can search for a specific host called Your-Freedom Servers with the following request:

GET http://localhost:8082/5.10/elements/host?filter=Your-Freedom Servers

This request returns a 200 HTTP response status code and the following:

{
 "result":
 [
 {
 "href": "http://localhost:8082/5.10/elements/host/86",
 "name": "Your-Freedom Servers",

15

 "type": "host"
 }
]
}

Creating a host
Create a host with the JSON format.

After logon, create a Host element in the JSON format with the following request:

POST http://localhost:8082/5.10/elements/host
Request body:
{
 "name": "mySrc1",
 "comment": "My SMC API's my Src Host 1",
 "address": "192.168.0.13",
 "secondary": ["10.0.0.156"]
}

The request returns a 201 HTTP response status code and the following in the HTTP header:Location:

http://localhost:8082/5.10/elements/host/1704

See createHostThenDeleteIt.py JSON or XML samples.

The system prevents you from creating an element without a unique name.

If you try to create an element with an existing name, you receive a 404 HTTP error status code and
the following error message:

 {
 "details":
 [
 "Element name fra-hide is already used."
],
 "message": "Impossible to store the element fra-hide."
 }

Modifying an existing host
After logon, you must first search for the host and then you can modify an existing host.

Search for the host using the filtering feature:

GET http://localhost:8082/5.10/elements/host?filter=mySrc1

After the element is found, use the following request:

GET http://localhost:8082/5.10/elements/host/1704

It returns the JSON host description and its ETag in the HTTP header in the following way:

Etag: MTcwNDMxMTEzNzQwNDMwNzM1NDQ=
 {
 "address": "192.168.0.13",
 "comment": "My SMC API's my Src Host 2",
 "key": 1704,
 "link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/host/1704",
 "method": "GET",
 "rel": "self",
 "type": "host"
 }
],
 "name": "mySrc2",

16

 "read_only": false,
 "secondary":
 [
 "10.0.0.156"
],
 "system": false,
 "third_party_monitoring":
 {
 "netflow": false,
 "snmp_trap": false
 }
}

From the JSON content, you can update the host as needed (add attributes, or add, remove, or
update hosts).

PUT http://localhost:8082/5.10/elements/host/1704

Using Etag: MTcwNDMxMTEzNzQwNDMwNzM1NDQ= as the HTTP request header, and the updated JSON
content as the HTTP request payload, returns a 200 HTTP response status code and the following in
the HTTP response header:

Location: http://localhost:8082/5.10/elements/host/1704

See updateHostThenDeleteIt.py JSON or XML samples.

Deleting a host
After logon, you must first search for the host and then you can find and delete an existing host.

Search for the host using the filtering feature:

GET http://localhost:8082/5.10/elements/host?filter=mySrc1

http://localhost:8082/5.10/elements/host/1704

After the host is found, using the following request returns a 204 HTTP response status code:

DELETE http://localhost:8082/5.10/elements/host/1704

See createHostThenDeleteIt.py and updateHostThenDeleteIt.py JSON or XML samples.

Working with Policy elements
The SMC API can be used to modify, upload, and monitor the status of Policy elements.

Modifying a rule in a policy
You can modify a rule within an existing policy.

After logon, you must first search for the policy using the filtering feature:

GET http://localhost:8082/5.10/elements/fw_policy?filter=HQ Policy

After the policy is found, you can retrieve a specific type of rule with the following request:

http://localhost:8082/5.10/elements/fw_policy/56

GET http://localhost:8082/5.10/elements/fw_policy/56

These special links to the Firewall Policy retrieve all applicable rules in the current policy:

• fw_ipv4_access_rules — Retrieves all Firewall IPv4 Access rules

• fw_ipv6_access_rules — Retrieves all Firewall IPv6 Access rules

17

• fw_ipv4_nat_rules — Retrieves all Firewall IPv4 NAT rules

• fw_ipv6_nat_rules — Retrieves all Firewall IPv6 NAT rules

For example, in Firewall IPv4 Access rules, the first rule is @514.0:

{
 "href": "http://localhost:8082/5.10/elements/fw_policy/56/fw_ipv4_access_rule/514",
 "name": "Rule @514.0",
 "type": "fw_ipv4_access_rule"
}

GET http://localhost:8082/5.10/elements/fw_policy/56/fw_ipv4_access_rule/514

The content of the @514 Firewall IPv4 Access rule is retrieved:

 {
 "comment": "Set logging default, set long timeout for SSH connections",
 "is_disabled": false,
 "key": 2543,
 "link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/fw_policy/56/
fw_ipv4_access_rule/514",
 "method": "GET",
 "rel": "self",
 "type": "fw_ipv4_access_rule"
 }
],
 "parent_policy": "http://localhost:8082/5.10/elements/fw_policy/56",
 "rank": 4,
 "read_only": false,
 "system": false,
 "tag": "514.0"
}

The result has ETag: MjU0Mzk4MTEzMDYyMzMyMzYxMTg= as the HTTP response header.

This rule seems to be a comment rule (no source/destination/service attributes are defined), so you
could update the comment, for example:

PUT http://localhost:8082/5.10/elements/fw_policy/56/fw_ipv4_access_rule/514

The new JSON content with the updated comment and ETag: MjU0Mzk4MTEzMDYyMzMyMzYxMTg= as the
HTTP request header returns a 200 HTTP response status code and the following in the HTTP response
header:

http://localhost:8082/5.10/elements/fw_policy/56/fw_ipv4_access_rule/514

See addRuleAndUpload.py JSON or XML samples.

Uploading a policy and monitoring its status
There are two ways of uploading or refreshing a policy — from the engine and from the policy.

To upload a policy from the engine, you must first search for the engine after logging in using the
filtering feature:

GET http://localhost:8082/5.10/elements?filter=Helsinki FW

Engine

18

After the engine has been retrieved, the following JSON content is displayed:

 "link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/refresh",
 "method": "POST",
 "rel": "refresh"
 },
 {
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/upload",
 "method": "POST",
 "rel": "upload"
 },
 …
]

Policy

The verb ‘upload’ is listed, so you can execute the following request:

POST http://localhost:8082/5.10/elements/fw_cluster/1563/upload?filter=HQ Policy

By filtering the REST call with the HQ Policy, you enable the upload of the HQ Policy on the Helsinki
Firewall Cluster.

This results in the 201 HTTP response status code and the following:

{
 "follower": "http://localhost:8082/5.10/elements/fw_cluster/1563/upload/
NWYyMDBiOTA4ZTY3NDM0ZTotNzgyM2JmMmI6MTNmZWMxMGI3ZGY6LTdmZDA=",
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563",
 "in_progress": true,
 "last_message": "",
 "success": true
}

To follow up on the upload, you can periodically request for its status in the following way:

GET http://localhost:8082/5.10/elements/fw_cluster/1563/upload/
NWYyMDBiOTA4ZTY3NDM0ZTotNzgyM2JmMmI6MTNmZWMxMGI3ZGY6LTdmZDA=

For as long as the attribute in_progress is not set to false, the upload continues with a new
last_message attribute.

It is also possible to refresh a policy on the engine. As you can see from the engine links, the verb
‘refresh’ is also available on the engine:

POST http://localhost:8082/5.10/elements/fw_cluster/1563/refresh

This process ends in the same way as an upload. The engine must have a policy already installed to
proceed to the upload.

See addRuleAndUpload.py JSON or XML samples.

Working with VPNs
You can use the SMC API to configure gateways, certificates, VPN topology, and settings for VPNs.

The following data elements are used in VPN configuration.

19

Table 1 Data elements for VPN configuration

Data element Data type Parent element Actions

vpn VPN elements none

vpn_profile VPN Profile elements none

gateway_profile Gateway Profile elements none

gateway_settings Gateway Settings elements none

gateway_certificate Gateway
Certificate

internal_gateway certificate_export, renew

gateway_certificate_request Gateway
Certificate
Request

internal_gateway certificate_import,
certificate_export,
self_sign

internal_gateway Internal Gateway single_fw, fw_cluster,
master_engine

generate_certificate

external_gateway External Gateway elements none

vpn_certificate_authority VPN Certificate
Authority

elements certificate_import,
certificate_export

Data elements for VPN configuration support the following standard operations:

• List (GET)

• Read (GET)

• Create (POST)

The gateway_certificate and gateway_certificate_request data elements do not support the Create
(POST) operation. You must use the generate_certificate action for the internal_gateway data
element to create gateway_certificate and gateway_certificate_request data elements.

• Modify (PUT)

The gateway_certificate and gateway_certificate_request data elements do not support the Modify
(PUT) operation. You must use the generate_certificate action for the internal_gateway data element
to modify gateway_certificate and gateway_certificate_request data elements.

• Delete (DELETE)

Viewing information about VPNs
You can use GET requests to list VPNs and view information about VPNs.

After logon, use this request to list all defined VPNs:

GET http://localhost:8082/5.10/elements/vpn

In all examples, the VPN's ID number is 5.

After logon, use this request to view information about a VPN:

GET http://localhost:8082/5.10/elements/vpn/5

This request returns a 200 HTTP status response code and this result:

{
 "key":5
 "link":[
 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/gateway_tree_nodes/central",
 "method":"GET",

20

 "rel":"central_gateway_node"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite",
 "method":"GET",
 "rel":"satellite_gateway_node"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/gateway_tree_nodes/mobile",
 "method":"GET",
 "rel":"mobile_gateway_node"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/open",
 "method":"POST",
 "rel":"open"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/save",
 "method":"POST",
 "rel":"save"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/close",
 "method":"POST",
 "rel":"close"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/validate",
 "method":"GET",
 "rel":"validate"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/tunnels",
 "method":"GET",
 "rel":"gateway_tunnel"
 },

 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5",
 "method":"GET",
 "rel":"self",
 "type":"vpn"
 }],

 "mobile_vpn_topology_mode":"None",
 "name":"Corporate VPN",
 "nat":false,
 "read_only":false,
 "system":false,
 "vpn_profile":"http://127.0.0.1:8082/5.10/elements/vpn_profile/1"
}

Opening a VPN topology
You must open a VPN topology before you can modify it.

Only one VPN topology can be opened at a time for each HTTP session.

Open a VPN topology with this request:

POST http://localhost:8082/5.10/elements/vpn/5/open

21

This request returns a 200 HTTP status response code. You are now able to query inside the VPN
topology.

Viewing information about gateway-to-gateway tunnels
You can use GET requests to list the tunnels between gateways in a VPN, and to view information
about a specific gateway-to-gateway tunnel.

After opening the VPN topology, use this request to list the gateway-to-gateway tunnels in the VPN:

GET http://localhost:8082/5.10/elements/vpn/5/tunnels

This request returns a 200 HTTP status response code and this result:

{
 "result":
 [
 {
 "href":"http://127.0.0.1:8082/5.10/elements/vpn/5/tunnels/ADcAOw==",
 "name":"Gateway Tunnel 55-59",
 "type":"gateway_tunnel"
 },
]}

Use this request to view information about a specific gateway-to-gateway tunnel:

GET http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==

This request returns a 200 HTTP status response code and this result:

{
 "enabled":true,
 "gateway_node_1":"http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/
55",
 "gateway_node_2":"http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/central/
59",
 "key":0,
 "link":[
 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==",
 "method":"GET",
 "rel":"self",
 "type":"gateway_tunnel"
 },

 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==/endpoints",
 "method":"GET",
 "rel":"gateway_endpoint_tunnel",
 "type":"gateway_endpoint_tunnel"
 }
],

"preshared_key":"iAb28nUyhweaQ6nLLrBG7NyaxJc48zFU5nn9HphYGVpZcrupyWiEf47z6JENq2EXZXgceStoRArs
MxHQqoDY9wCnaVGNs3Vv4G9rcm6X9EPQRqaQBqpprfKAHEToaCMR97rE7dqK9BBJFD"
}

Viewing information about endpoint-to-endpoint tunnels
You can use GET requests to list the tunnels between endpoints in a VPN, and to view information
about a specific endpoint-to-endpoint tunnel.

After opening the VPN topology, use this request to list the endpoint-to-endpoint tunnels for a specific
gateway:

GET http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==/endpoints

22

The request returns a 200 HTTP status response code and this result:

{
 "result":
 [
 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==/endpoints/
AGoAcg==",
 "name":"Gateway EndPoint Tunnel 106-114",
 "type":"gateway_endpoint_tunnel"
 },
]
}

Use this request to view information about a specific endpoint-to-endpoint tunnel:

GET http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==/endpoints/AGoAcg==

The request returns a 200 HTTP status response code and this result:

{
 "enabled":true,
 "endpoint_1":"http://localhost:8082/5.10/elements/fw_cluster/1554/internal_gateway/55/
internal_endpoint/106",
 "endpoint_2":"http://localhost:8082/5.10/elements/fw_cluster/1563/internal_gateway/59/
internal_endpoint/114",
 "key":0,
 "link":[
 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/tunnels/ADcAOw==/endpoints/
AGoAcg==",
 "method":"GET",
 "rel":"self",
 "type":"gateway_endpoint_tunnel"
 }
]
}

Viewing information about a gateway
You can use GET requests to view information about gateways in a VPN topology.

There are two requests for viewing information about gateways in the VPN topology:

• GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/central — Shows
information about gateways on the central gateways list.

• GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite — Shows
information about gateways on the satellite gateways list.

After opening the VPN topology, use this request to view information about a specific gateway node:

GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/67

The request returns a 200 HTTP status response code and this result:

{
 "child_node":["http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/
65"],
 "gateway":"http://localhost:8082/5.10/elements/fw_cluster/1588/internal_gateway/67",
 "key":67,
 "link":[
 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/
67",
 "method":"GET",
 "rel":"self",
 "type":"satellite_gateway_node"
 },

23

 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/
satellite/67/sites/enabled",
 "method":"GET",
 "rel":"vpn_site",
 "type":"vpn_site"
 },

 {
 "href":"http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/
satellite/67/sites/disabled",
 "method":"GET",
 "rel":"vpn_site",
 "type":"vpn_site"
 }
],

 "node_usage":"satellite",
 "parent_node":"http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/
66",
 "vpn_key":5
}

The gateway_tree_nodes data element represents nodes in the VPN topology tree. The
internal_gateway attribute gives access to the gateway data element.

Adding a gateway node to the VPN topology
You can use POST requests to add a gateway node to the VPN topology.

After opening the VPN topology, use this request to add an internal_gateway data element to the
gateway_tree_nodes in the VPN topology:

POST http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite
{"gateway":"http://localhost:8082/5.10/elements/fw_cluster/1557/internal_gateway/56",
"node_usage":"central"}

The gateway_tree_nodes data element represents nodes in the VPN topology tree. The
internal_gateway attribute gives access to the gateway data element.

Deleting a gateway node from the VPN topology
You can use DELETE requests to delete a gateway node from the VPN topology.

Deleting a gateway node from the VPN topology does not delete the internal_gateway or
external_gateway data element.

After opening the VPN topology, use this request to delete a gateway node from the VPN topology:

DELETE http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/67

Moving a gateway node in the VPN topology
You can move a gateway node to the central or satellite gateways list, or move a gateway node under
a parent node in the VPN topology.

After opening the VPN topology, use this request to move a gateway node from the central gateways
list to the satellite gateways list in the VPN topology:

PUT http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/central/67
"node_usage":"satellite"

24

After opening the VPN topology, use this request to move a gateway node from the satellite gateways
list to the central gateways list in the VPN topology:

PUT http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/67
"node_usage":"central"

After opening the VPN topology, use this request to move a gateway node under a parent node in the
VPN topology:

PUT http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/67
"parent_node":http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66

Listing the sites in a VPN
You can use GET requests to list the enabled and disabled sites in a VPN.

After opening the VPN topology, use these requests to list the sites associated with a central gateway
in a VPN:

• GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/central/88/sites/
enabled — Lists the enabled sites associated with the central gateway.

• GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/central/88/sites/
disabled — Lists the disabled sites associated with the central gateway..

After opening the VPN topology, use these requests to list the sites associated with a satellite gateway
in a VPN:

• GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/
sites/enabled — Lists the enabled sites associated with the satellite gateway.

• GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/
sites/disabled — Lists the disabled sites associated with the satellite gateway.

After opening the VPN topology, use this request to list the enabled sites associated with a satellite
gateway in the VPN:

GET http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/sites/
enabled

In this example, the satellite gateway's ID number is 66.

This request returns a 200 HTTP status response code and this result:

{
result: [2]
0: {
href: "http://127.0.0.1:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/sites/
enabled/68"
name: "vpn_site 68"
obsolete: false
type: "vpn_site"
}-
1: {
href: "http://127.0.0.1:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/sites/
enabled/61"
name: "vpn_site 61"
obsolete: false
type: "vpn_site"
}-
-
}

25

Enabling or disabling sites in a VPN
You can use DELETE requests to change the status of a site in a VPN.

The DELETE request toggles the status of the site. Sites in the enabled sites list are moved to the
disabled sites list. Sites in the disabled sites list are moved to the enabled sites list.

After opening the VPN topology, use this request to disable a site in a VPN:

DELETE http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/
sites/enabled/68

The site is removed from the enabled sites list and added to the disabled sites list.

After opening the VPN topology, use this request to enable a site in a VPN:

DELETE http://localhost:8082/5.10/elements/vpn/5/gateway_tree_nodes/satellite/66/
sites/disabled/68

The site is removed from the disabled sites list and added to the enabled sites list.

Validating a VPN topology
You can use the SMC API to retrieve a list of VPN topology validation issues.

In this example, the validation has already been done. The example request queries the result of the
validation. It does not trigger the validation action.

There are three kinds of validation issues:

• VPN Global Issues — Issues that affect the whole VPN.

• GwGw Issues — Issues that affect tunnels between gateways.

• EpEp Issues — Issues that affect tunnels between endpoints.

Retrieve the list of VPN topology validation issues with this request:

GET http://localhost:8082/5.10/elements/vpn/5/validate

This request returns a 200 HTTP status response code and this result:

{
"value":"VPN Topology validation detects some warnings/errors for VPN 5, please check it:
GwGw Issues:
 - 66<->67
 -- WARNING: The Gateway Riyadh VPN Gateway is a hub in the Overall Topology, but has no
Site in Hub mode in this VPN.
 - 65<->67
 -- WARNING: The Gateway Tunis VPN Gateway is a hub in the Overall Topology, but has no
Site in Hub mode in this VPN."
}

Saving a VPN topology
When you finish changing a VPN topology, save the VPN topology.

Saving a VPN topology is resource-intensive. Avoid excessive save operations.

To save the VPN topology, use this request:

POST http://localhost:8082/5.10/elements/vpn/5/save

This request returns a 200 HTTP status response code.

26

Closing a VPN topology
When you finish working with a VPN topology, close the VPN topology.

Closing the VPN topology without saving the VPN topology discards the changes.

To close the VPN topology, use this request:

POST http://localhost:8082/5.10/elements/vpn/5/close

This request returns a 200 HTTP status response code.

Filtering searches by group type
It is possible to filter searches by group type.

These search context groups are currently available:

• Network_elements — Search for all Network elements. Network elements are used in the
Source/Destination cells in the Policy Editing view.

• Services — Search for all services. Services are used in the Service cell in the Policy Editing view.

• Services_and_applications — Search for all Services and Applications. Services and Applications
are used in the Service cell in the Policy Editing view.

• Tags — Search for all tags. Tags are used in the Policy Editing view for Inspection rules.

• Situations — Search for all Situations. Situations are used in the Policy Editing view for Inspection
rules.

For example, the REST call could have the following content:

https://[server]:[port]/[version]/elements?
filter=NameOfElement&filter_context=ElementTypeOrSearchContextGroup

In this example, ElementTypeOrSearchContextGroup can be either the type of the element, like
host/address_range/…, or network_elements/services/ services_and_applications/tags/
situations. Lists of element types are also supported. For example, “host, router, network” can be used
to filter the types to host, router, or network elements.

Retrieving routing/antispoofing information
You can retrieve static or dynamic routing information from an engine.

To retrieve the complete (static/dynamic) routing information from an engine, you can execute the
following request:

GET /[version]/elements/[cluster_type]/[cluster_key]/routing/[routing_key]

To retrieve antispoofing information, you can execute the following request:

GET /[version]/elements/[cluster_type]/[cluster_key]/antispoofing/[antispoofing _key]

For example, for the Helsinki Firewall Cluster, you would have the following:

"link":
 [
 …
 {
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/routing/887",
 "method": "GET",
 "rel": "routing",
 "type": "routing"
 },
 {

27

 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/antispoofing/990",
 "method": "GET",
 "rel": "antispoofing",
 "type": "antispoofing"
 },
 …
],

To access the routing information, you must use the routing link:

GET http://localhost:8082/5.10/elements/fw_cluster/1563/routing/887

The routing link returns a 200 HTTP response status code and the following:

 {
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563",
 "ip": "10.8.0.21",
 "key": 887,
 "level": "engine_cluster",
 "link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/routing/887",
 "method": "GET",
 "rel": "self",
 "type": "routing"
 }
],
 "name": "Helsinki FW",
 "read_only": false,
 "routing_node":
 [
 {
 "exclude_from_ip_counting": false,
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/physical_interface/276",
 "key": 888,
 "level": "interface",
 "name": "Interface 0",
 "nic_id": "0",
 "read_only": false,
 "routing_node":
 [

To access the antispoofing information, you must use the antispoofing link:

GET http://localhost:8082/5.10/elements/fw_cluster/1563/antispoofing/990

The antispoofing link returns a 200 HTTP response status code and the following:

 …
 "auto_generated": "true",
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/tunnel_interface/343",
 "key": 1333,
 "level": "interface",
 "name": "Tunnel Interface 1002",
 "nic_id": "1002",
 "read_only": false,
 "system": false,
 "validity": "enable"
 }
],
 "auto_generated": "true",
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563",
 "ip": "10.8.0.21",
 "key": 990,
 "level": "engine_cluster",
 "link":
 [
 {
 "href": "http://localhost:8082/5.10/elements/fw_cluster/1563/antispoofing/990",

28

 "method": "GET",
 "rel": "self",
 "type": "antispoofing"
 }
],
 "name": "Helsinki FW",
 "read_only": false,
 "system": false,
 "valid"
 }

Copyright © 2015 McAfee, Inc. www.intelsecurity.com

Intel and the Intel logo are trademarks/registered trademarks of Intel Corporation. McAfee and the McAfee logo are trademarks/
registered trademarks of McAfee, Inc. Other names and brands may be claimed as the property of others.

A00 29

http://www.intelsecurity.com

	
	Introduction
	Supported use cases
	User session identification
	Adjust the HTTP session inactivity timeout
	Backward compatibility

	Configure SMC API
	Create TLS credentials for SMC API Clients
	Enable SMC API
	Create an API Client element

	Working with RESTful principles
	Requests
	Status codes and error messages
	ETags
	304 status code handling
	Opaque URIs, URI discovery, and hypermedia
	Body content and query parameters

	Entry point structure
	Verbs
	Self verbs
	Installing a policy from a Policy element
	Uploading the engine configuration from an engine element
	Refreshing the engine configuration from an engine element

	API discovery
	Links

	Data element formats
	JSON
	XML

	Working with resource elements
	Searching for resources
	Retrieving a resource
	Creating a resource
	Updating a resource
	Deleting a resource

	Specific searches
	Searching for unused elements
	Searching for duplicate IP addresses
	System information

	Examples
	Client access and logon
	Version-specific entry point
	Global services and element URIs
	Logging on

	Working with hosts
	Listing the hosts collection
	Filtering elements
	Creating a host
	Modifying an existing host
	Deleting a host

	Working with Policy elements
	Modifying a rule in a policy
	Uploading a policy and monitoring its status

	Working with VPNs
	Viewing information about VPNs
	Opening a VPN topology
	Viewing information about gateway-to-gateway tunnels
	Viewing information about endpoint-to-endpoint tunnels
	Viewing information about a gateway
	Adding a gateway node to the VPN topology
	Deleting a gateway node from the VPN topology
	Moving a gateway node in the VPN topology
	Listing the sites in a VPN
	Enabling or disabling sites in a VPN
	Validating a VPN topology
	Saving a VPN topology
	Closing a VPN topology

	Filtering searches by group type
	Retrieving routing/antispoofing information

