
Integration Guide

Ultan Casey

21 Aug 2020

Public forcepoint.com

Doc Title

Forcepoint Next
Generation Firewall and
Amazon GuardDuty

Integration Guide

ration Guide

 Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

 © 2020 Forcepoint Public 1

forcepoint.com

Table of Contents

Summary 2

Configure API Client in Forcepoint NGFW SMC 4

Lifecycle of IP addresses received from Amazon GuardDuty 5

Implementation - Docker 5

Implementation - Traditional 6

Configure Amazon resources using CloudFormation 7

Troubleshooting 9

Appendix – Configuration File 15

Version Date Author Notes

0.1 6 May 2020 Ultan Casey First draft

0.2 8 May 2020 Mattia Maggioli Review

0.3 13 May 2020 Neelima Rai Added troubleshooting chapter

0.4 13 May 2020 Mattia Maggioli Review

0.5 21 August 2020 Ultan Casey
Replaced AWS deployment method with

CloudFormation

0.6 21 August 2020 Mattia Maggioli Review

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 2

Summary

This guide provides step by step instructions to set up an integration between the Forcepoint Next Generation Firewall (NGFW)

and Amazon GuardDuty.

This integration enables automated export in real-time of Amazon GuardDuty findings into Forcepoint NGFW so that IP

addresses identified within Amazon GuardDuty findings can be used in security policies of Forcepoint NGFW.

The code and instructions provided enable system administrators to automatically:

→ Track GuardDuty events using CloudWatch

→ Convert format and export security findings using a Lambda function

→ Receive the security findings with an on-premise connector

→ Add IP addresses into a user-defined list inside the Forcepoint NGFW Security Management Center (SMC)

A description of the workflow between the components involved in this POC is depicted in this diagram:

Caveats

The integration described in this document was developed and tested with the following product versions:

→ Forcepoint NGFW 6.7.2

→ Forcepoint SMC 6.7.3

This interoperability uses:

→ Amazon GuardDuty: a threat detection service that continuously monitors for malicious activity and unauthorized

behavior

→ AWS CloudWatch: a monitoring and observability service

→ AWS Lambda: a service which lets you run code without provisioning or managing servers

→ AWS CloudFormation: a service which provides one click deployment of entire stacks of AWS resources

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 3

→ Connector Server: a component hosted at customer premises exposing an endpoint used to receive security findings

from AWS Lambda

→ RabbitMQ: a message broker used to handle queuing of ingestion tasks

→ Connector Worker: a task handler which controls the ingestion of IP addresses into the user-defined list using the

SMC API

Implementation options

Two implementation options are provided in this document for the on-premise portion of the integration.

1. Docker – Uses a docker image where the integration component is already installed with all necessary dependencies:

the user only has to edit one configuration file and run the container on an existing docker setup.

2. Traditional – requires manual deployment of the integration component inside a clean host machine.

The docker version of the connector server and worker requires the following files:

→ fp-ngfw-aws-guardduty-docker-v1.zip available at this link: https://frcpnt.com/fp-ngfw-aws-guardduty-docker-latest

and has been tested working with the following requirements:

→ Docker 19.03.6

→ Docker Compose 1.25.5

→ The host machine meets the minimum hardware requirements of 2GB of RAM and 20GB of storage

The traditional version of the connector server and worker requires the following files:

→ fp-ngfw-aws-guardduty-v1.zip available at this link: https://frcpnt.com/fp-ngfw-aws-guardduty-latest

and has been tested working with the following requirements:

→ CentOS 7.6 with at least 2 GB RAM and 20 GB disk

→ Python 3.6

→ The following Python modules:

o flask v1.1.1

o requests v2.23.0

o celery v4.4.2

o pyyaml v5.3.1

o fp-NGFW-SMC-python v0.7.0b20

Both implementations require

→ fp-ngfw-aws-guardduty-lambda-v1.zip available at this link: https://frcpnt.com/fp-ngfw-aws-guardduty-lambda-latest

→ fp-ngfw-aws-guardduty-cloudformation-v1.zip available at this link: https://frcpnt.com/fp-ngfw-aws-guardduty-

cloudformation-latest

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 4

→ Amazon GuardDuty disabled during installation of the CloudFormation stack.

→ A public IP assigned to the Connector Server hosted on-premise either inside a docker container or a local machine.

Configure API Client in Forcepoint NGFW SMC

To enable the Connector to ingest new IP addresses into the blacklist of SMC an API client must first be created and API must

be enabled.

1. Login to Forcepoint SMC and from the homepage navigate to Configuration.

2. From the sidebar open Administration > Access Rights > API Clients.

3. Select New to create a new API client.

4. Provide a name for your new Client. In this example we will use Amazon GuardDuty.

5. Under permissions provide the client with unrestricted permissions.

6. Save the Authentication Key in a secure location as it will be necessary in the next steps of this document, then click

Ok.

7. Once again from the homepage of the SMC navigate to Others.

8. Right click Management Server and select Properties.

9. Open the SMC API tab and enable the checkbox there to enable the API.

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 5

Lifecycle of IP addresses received from Amazon
GuardDuty

Each NGFW engine managed by the SMC maintains its own separate blacklist of IP addresses. Blacklist can be configured

into policies which are then applied to the engines.

When a relavent event occurs within GuardDuty which contains an IP address, this is sent using AWS Lambda to the

Connector Server which places it in the queue to be added to the NGFW engines. The worker then pulls this from the queue

and adds it to each engine. It is possible to exclude named engines whose blacklist will not receive the IP address: this is

explained in the Appendix of this document.

The addresses which have been added to the blacklist remain within the blacklist for the duration defined in the configuration

file. After this time is expired they are automatically removed.

Any new additions to the blacklists are immediately available to rules utilising the blacklists.

Implementation - Docker

In order to set up the Connector do as follows:

1. Login to the docker registry with the following command

docker login docker.frcpnt.com

User: fp-integrations

Pass: t1knmAkn19s

2. Download and extract the fp-ngfw-aws-guardduty-docker-v1.zip file available at this link: https://frcpnt.com/fp-ngfw-

aws-guardduty-docker-latest to the downloads folder of the machine.

3. Create a configuration file named config.yaml with the following contents, editing the values as described in the

Appendix of this document. A sample is also contained within the config folder included with the downloaded files.

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 6

Connector config
host: 0.0.0.0
port: 5000
log_level: info

SMC config
smc_endpoint: http://<SMC_ENDPOINT_IP_OR_DOMAIN>
smc_port: 8082
smc_api_key: <SMC_API_KEY>
smc_api_version: 6.7
blacklist_duration: 3600
exclude_engines:

 - NGFW 1

- NGFW 2

Upload the file to a secure location where it can be accessed over http/https (e.g. a web server, an AWS S3 bucket,

Azure Blob Storage): this will make sure the configuration is not lost in case the docker container is decommissioned.

4. Retrieve the URL to the file and store it in a safe location as it will be used in the next steps of this document

5. Open the docker-compose.yml file and replace both instances of <CONFIG_FILE_URL> with the URL of the config

file just uploaded.

6. From the command line run the following command:

docker-compose up -d

7. Configure the necessary network and security settings in your infrastructure to expose the Connector endpoint using a

public IP, so that the endpoint can be reached by AWS Lambda.

Implementation - Traditional

1. Download and extract the fp-ngfw-aws-guardduty-v1.zip file available at this link: https://frcpnt.com/fp-ngfw-aws-

guardduty-latest to the downloads folder.

2. Create a configuration file named config.yaml with the following contents, editing the values as described in the

Appendix of this document. A sample is also contained within the config folder included with the downloaded files.

Connector config
host: 0.0.0.0
port: 5000
log_level: info

SMC config
smc_endpoint: http://<SMC_ENDPOINT_IP_OR_DOMAIN>
smc_port: 8082
smc_api_key: <SMC_API_KEY>
smc_api_version: 6.7
blacklist_duration: 3600
exclude_engines:

 - NGFW 1

- NGFW 2

Upload the file to a secure location where it can be accessed over http/https (e.g. a web server, an AWS S3 bucket,

Azure Blob Storage): this will make sure the configuration is not lost in case the services are moved elsewhere.

3. Retrieve the URL to the file and store it in a secure location as it will be used in the next steps of this document

4. From the command line navigate to the downloads folder and the extracted files.

5. Run the following command:

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 7

sudo chmod +x ./install.sh

6. Open both the start_server.sh file and start_worker.sh file with a text editor and replace <CONFIG_URL> with the

URL of the config file you uploaded.

7. Next install everything executing this command:

sudo ./install.sh

8. When prompted, type y.

9. Configure the necessary network and security settings in your infrastructure to expose the Connector endpoint using a

public IP, so that the endpoint can be reached by AWS Lambda.

Configure Amazon resources using CloudFormation

To enable events to be sent from GuardDuty to the on-premise connector we must now configure the AWS components

involved in this integration:

→ Amazon GuardDuty which detects events

→ a CloudWatch rule which triggers an AWS Lambda function upon the creation of a new finding in Amazon GuardDuty

→ an AWS Lambda function which pushes the finding to our integration component

This section requires fp-ngfw-aws-guardduty-lambda-v1.zip file available at this link: https://frcpnt.com/fp-ngfw-aws-

guardduty-lambda-latest and fp-ngfw-aws-guardduty-cloudformation-v1.zip file available at this link: https://frcpnt.com/fp-

ngfw-aws-guardduty-cloudformation-latest

1. Download both required zip files to the downloads folder.

2. Extract fp-ngfw-aws-guardduty-cloudformation-v1.zip which contains fp-ngfw-aws-guardduty-cloudformation-v1

3. Navigate to the AWS management console and from there open the S3 control panel.

4. Click on Create Bucket. Set the name of the bucket to fp-integrations-files and leave the rest as default. Click Create.

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 8

5. Navigate to the newly created bucket and click Create Folder and name it functions. Open this folder and select

Upload. Drag the fp-ngfw-aws-guardduty-lambda-v1.zip file into the upload window and select Upload.

6. Return to the AWS Management Console and from there search for and open CloudFormation.

7. Click Create Stack and from the dropdown select With new resources (standard).

8. Leave the Prepare Template field as default and under Specify Template select Upload a Template File. Upload the

fp-ngfw-aws-guardduty-cloudformation-v1 file extracted earlier. Click Next.

9. Set the stack name to ForcepointNGFW-GuardDuty. Under parameters update the SMC Endpoint to that of the

connector. It should be in the following format

http://<IP_OR_ADDRESS_OF_CONNECTOR>:5000/api/

Leave all other parameters as default and click Next.

10. On the next page click Next.

11. On the last page select ‘I acknowledge that AWS CloudFormation might create IAM resources’ and click Create

Stack to kick off the deployment of all the resources. This may take up to five minutes to deploy.

Once the deployment is completed, new findings generated by Amazon GuardDuty will be pushed to the integration

component and subsequently into the SMC, which will then propagate the IP addresses into the blacklist of the NGFW

engines.

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 9

Troubleshooting

Follow these steps to identify issues impacting the normal operation of the integration described in this document.

Docker Implementation

Validate the prerequisites
Make sure the prerequisites described in the Summary chapter are all satisfied:

→ Check the versions of Forcepoint NGFW and Forcepoint SMC in use are listed as compatible

Forcepoint NGFW 6.7.2

Forcepoint SMC 6.7.3

→ Docker images for this integration have been tested with

Docker 19.03.6

Docker-compose 1.25.5

→ The host machine should have at least 2 GB RAM and 20 GB disk and an existing docker engine and docker

compose installed

→ Amazon GuardDuty disabled during installation of the CloudFormation stack.

→ Check the user can download the necessary files with the following commands:

wget --content-disposition https://frcpnt.com/fp-ngfw-aws-guardduty-docker-latest

wget --content-disposition https://frcpnt.com/fp-ngfw-aws-guardduty-lambda-latest

wget --content-disposition https://frcpnt.com/fp-ngfw-aws-guardduty-cloudwatch-latest

Check network connectivity
Make sure firewalls or other security appliances are not impacting the network connectivity necessary for the operation of all

components involved into this integration:

→ Check the docker host machine has connectivity to SMC by executing the following command on docker host

machine

ping -c 2 SMC_HOST_IP_ADDRESS

replacing the SMC_HOST_IP_ADDRESS with your Forcepoint SMC host IP address. Once done check the result is

similar to below:

PING SMC_HOST_IP_ADDRESS.url (10.10.120.12) 56(84) bytes of data.

64 bytes from 10.10.120.12 (10.10.120.12): icmp_seq=1 ttl=128 time=179 ms

64 bytes from 10.10.120.12 (10.10.120.12): icmp_seq=1 ttl=128 time=181 ms

→ Check AWS Lambda can successfully post findings to the docker host machine by following the steps below:

1. Go to AWS Lambda service in the AWS Console.

2. Go to the GuardDuty-Exporter lambda function and click on Configure test events

https://frcpnt.com/fp-ngfw-aws-guardduty-docker-latest
https://frcpnt.com/fp-ngfw-aws-guardduty-lambda-latest

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 10

3. Click on Create new test event

4. Enter the below contents into the empty json field and click Create

{

 "detail": {

 "type": "UnauthorizedAccess:IAMUser/MaliciousIPCaller.Custom",

 "service": {

 "action": {

 "awsApiCallAction": {

 "remoteIpDetails": {

 "ipAddressV4": "198.51.100.0"

 }

 }

 }

 }

 }

}

5. Click on Test button and verify you get Execution result: succeeded

Check dependencies are installed
Make sure the software dependencies needed by the components involved into this integration are installed:

→ Check all dependencies are installed: execute the following command on docker host machine to check docker-

compose is installed:

docker-compose --version

→ Check the output presents a version of 1.25.4 or higher (example below):

docker-compose version 1.25.5, build 8d51620a

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 11

→ Check the host machine has docker installed: Execute the following command on the host machine:

docker --version

→ Check the first few lines of the output are similar to below:

Docker version 19.03.8, build afacb8b

Check all components are configured and running properly
Make sure the products and services involved into this integration are configured as expected and they are running:

→ Check the docker containers are running with the below command:

docker ps -a

Verify the output is similar to below:

→ Check the Connector Server is reachable and running by using a browser to open the webpage at the address:

http://<IP_OR_ADDRESS_OF_CONNECTOR>:5000/api/

Replace the part in red with the public IP address or FQDN resolving to the public IP assigned to the docker host. Check

the page at the above URL reads:

Running...

→ Verify the below services are enabled and running on AWS:

• GuardDuty

From the AWS Management Console navigate to AWS GuardDuty. If GuardDuty has been enabled, the

findings field should be visible. If the deployment failed, the option to enable GuardDuty will be present.

• CloudWatch

To verify that the CloudWatch rule has been deployed, navigate to AWS CloudWatch and from there select Rules in the

sidebar. If the deployment was successful a rule should be present with a name similar to: ForcepointNGFW-GuardDuty-

GuardDutyWatcher-<AWS generated ID>

• Lambda

If the Lambda function successfully deployed, you should be able to verify it by navigating to AWS Lambda

and in the list of functions there should be one with a name similar to: ForcepointNGFW-GuardDuty-

GuardDutyExporter- <AWS generated ID>

Traditional Implementation

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 12

Validate the prerequisites
Make sure the prerequisites described in the Summary chapter are all satisfied:

→ Check the versions of Forcepoint NGFW and Forcepoint SMC in use are listed as compatible

Forcepoint NGFW 6.7.2

Forcepoint SMC 6.7.3

→ Verify the integration is operating on a CentOS 7.6 machine with at least 2 GB RAM and 20 GB disk

→ User needs sudo permissions on the host machine

→ Amazon GuardDuty disabled during installation of the CloudFormation stack.

→ Check the user can download the necessary files with the following commands:

wget --content-disposition https://frcpnt.com/fp-ngfw-aws-guardduty-latest

wget --content-disposition https://frcpnt.com/fp-ngfw-aws-guardduty-lambda-latest

wget --content-disposition https://frcpnt.com/fp-ngfw-aws-guardduty-cloudwatch-latest

Check network connectivity
Make sure firewalls or other security appliances are not impacting the network connectivity necessary for the operation of all

components involved in this integration:

→ Check the host machine has connectivity to SMC: execute the following command on the host machine:

ping -c 2 SMC_HOST_IP_ADDRESS

Replacing the SMC_HOST_IP_ADDRESS with your Forcepoint SMC host IP address. Once done check the result is

similar to below:

PING SMC_HOST_IP_ADDRESS.url (10.10.120.12) 56(84) bytes of data.

64 bytes from 10.10.120.12 (10.10.120.12): icmp_seq=1 ttl=128 time=179 ms

64 bytes from 10.10.120.12 (10.10.120.12): icmp_seq=1 ttl=128 time=181 ms

→ Check AWS lambda can successfully post findings to the connector host machine by following the steps below:

1. Go to AWS Lambda service in the AWS Console

2. Go to the GuardDuty-Exporter lambda function and click on Configure test events

3. Click Create new test event

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 13

4. Enter the below contents into the empty json field and click Create

{

 "detail": {

 "type": "UnauthorizedAccess:IAMUser/MaliciousIPCaller.Custom",

 "service": {

 "action": {

 "awsApiCallAction": {

 "remoteIpDetails": {

 "ipAddressV4": "198.51.100.0"

 }

 }

 }

 }

 }

}

5. Click Test button and verify you get Execution result: succeeded

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 14

Check dependencies are installed
Make sure the software dependencies needed by the components involved into this integration are installed:

→ Check python3.6 is installed: Execute following command on host machine:

python3 --version

Check the output is similar to below:

Python 3.6.8

→ Check the necessary packages are installed: Execute the following command on the host machine:

 pip3 list 2> /dev/null | grep -e requests -e Flask -e PyYaml -e celery -e fp-NGFW-SMC-python

Check the output is similar to below:

celery 4.4.2

Flask 1.1.1

fp-NGFW-SMC-python 0.7.0b20

requests 2.23.0

requests-unixsocket 0.2.0

Check all components are configured and running properly
Make sure the products and services involved into this integration are configured as expected and they are running:

→ Check the necessary services are running with the following commands:

systemctl status ngfw-aws-guardduty-worker.service

systemctl status ngfw-aws-guardduty-server.service

Check the output for both shows active status for both the services

→ Check the domain service is running at the below webpage:

http://<IP_OR_ADDRESS_OF_CONNECTOR>:5000/api/

Replace the part in red with the public IP address or FQDN resolving to the public IP assigned to the docker host. Check

the page at the above URL reads:

Running...

→ Verify the below services are enabled and running on AWS:

• GuardDuty

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 15

From the AWS Management Console navigate to AWS GuardDuty. If GuardDuty has been enabled, the

findings field should be visible. If the deployment failed, the option to enable GuardDuty will be present.

• CloudWatch

To verify that the CloudWatch rule has been deployed, navigate to AWS CloudWatch and from there select Rules in the

sidebar. If the deployment was successful a rule should be present with a name similar to: ForcepointNGFW-GuardDuty-

GuardDutyWatcher-<AWS generated ID>

• Lambda

If the Lambda function successfully deployed, you should be able to verify it by navigating to AWS Lambda

and in the list of functions there should be one with a name similar to: ForcepointNGFW-GuardDuty-

GuardDutyExporter- <AWS generated ID>

Appendix – Configuration File

This table provides a description for the values required in the configuration file utilized by the Connector

Field Example Notes
Requires to

be changed

host 0.0.0.0

The IP address of the interface the Connector service is

binded to on the hosting machine or the docker container.

Default is 0.0.0.0 which will listen to any interface.

No

port 5000
The port on which the connector will listen for requests.

Default is 5000.
No

log_level info Log level determines the level of logs to be created. No

smc_endpoint https://192.168.1.222
The FQDN or IP address of the SMC endpoint. Used for

accessing the SMC API.
Yes

smc_port 8082
The port on which the SMC API is accessible. Default is

8082. This can be retrieved when enabling the SMC API.
Yes

smc_api_key abcdefgh1234567 API key necessary to utilise the SMC API. Yes

smc_api_version 6.7 Version of the SMC API to be used. Default is 6.7. No

blacklist_duration 3600

Duration in seconds of how long IP addresses ingested

from GuardDuty will stay in the user-defined list in the

SMC.

No

exclude_engines
- NGFW NAME

- NGFW 2

Engines whose blacklist will not receive the IP addresses

exported from GuardDuty.

Each engine is denoted by a dash followed by the name of

the engine as visible in the list of engines in the SMC.

Yes

Forcepoint Next Generation Firewall and Amazon GuardDuty - Integration Guide

© 2020 Forcepoint Public 16

About Forcepoint

Forcepoint is the global human-centric cybersecurity company

transforming the digital enterprise by continuously adapting

security response to the dynamic risk posed by individual users

and machines. The Forcepoint human point system delivers

risk-adaptive protection to continuously ensure trusted use of

data and systems. Based in Austin, Texas, Forcepoint protects

the human point for thousands of enterprise and government

customers in more than 150 countries.

forcepoint.com/contact

© 2020 Forcepoint. Forcepoint and the FORCEPOINT logo are trademarks of Forcepoint.

All other trademarks used in this document are the property of their respective owners.

