X-Series™ Switch Configuration

Forcepoint™ X-Series Appliance

v8.2.x
Forcepoint X-Series™
Switch Configuration

In this guide:

- *Switch basics*, page 2
- *Assigning switch I/O modules an IP address*, page 5
- *Configuring VLAN and switch high availability*, page 9
- *Configuring No VLAN*, page 15
- *X10G switch configuration tool*, page 17
- *Installing a new switch*, page 19
Switch basics

X-Series appliances come with two Dell PowerConnect M6220 switches. When used with the X10G™, each switch supports two 10Gb SFP+ ports.

Support is provided for two common network deployments:

- No VLAN. See Configuring No VLAN, page 15.

The switch ports used and their specific configuration are determined by the network type.

A Microsoft Windows hosted switch configuration tool is provided to simplify the switch configuration process.

VLAN and switch high availability

The X10G integrated 10Gb switches (A1 and A2) can be configured for both VLAN and switch high availability (HA). HA is optional and can be used only if VLAN support is configured on the X10G blades.

Support for VLANs requires:

- A connection to an external upstream switch with one or two 10Gb trunk ports.
- A 10Gb cable to a 10Gb port on the A1 switch.
- Configuration of both switch A1 and A2 using the X-Series switch configuration tool. Optionally, the switches can be configured manually by a knowledgeable administrator.
- Configuration of VLAN support on the blades.
- Configuration of the STP priority on the upstream switch, X10G switches, and blades.

Support for switch HA requires:
- Configuration of VLAN support on the blades.
- Connection of a 10Gb trunk port on both the A1 and A2 switches on the X10G chassis to one or more upstream switches.
- Configuration of the A1 and A2 switches, performed with the X-Series switch configuration tool. Optionally, the switches can be configured manually by a knowledgeable administrator.

In the switch HA configuration, any one switch can be removed from service at any time for maintenance.

It is a best practice to verify that network traffic is flowing to your blade servers as expected, and if switch HA is configured, that failover works as expected.
Default switch configuration

Switches A1 and A2 arrive with the following default configuration:

<table>
<thead>
<tr>
<th>Switch A1</th>
<th>P1 Te1/2/1</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 gigabit</td>
<td>1518 maximum frame size (configurable)</td>
</tr>
<tr>
<td></td>
<td>Full duplex</td>
<td>Auto negotiation disabled</td>
</tr>
<tr>
<td></td>
<td>Flow control disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1 Te1/2/2</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>10 gigabit</td>
<td>1518 maximum frame size (configurable)</td>
</tr>
<tr>
<td></td>
<td>Full duplex</td>
<td>Auto negotiation disabled</td>
</tr>
<tr>
<td></td>
<td>Flow control disabled</td>
<td></td>
</tr>
<tr>
<td>Other ports are not supported.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Switch A2</th>
<th>P2 Te1/2/1</th>
<th>Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 gigabit</td>
<td>1518 maximum frame size (configurable)</td>
</tr>
<tr>
<td></td>
<td>Full duplex</td>
<td>Auto negotiation disabled</td>
</tr>
<tr>
<td></td>
<td>Flow control disabled</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2 Te1/2/2</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>10 gigabit</td>
<td>1518 maximum frame size (configurable)</td>
</tr>
<tr>
<td></td>
<td>Full duplex</td>
<td>Auto negotiation disabled</td>
</tr>
<tr>
<td></td>
<td>Flow control disabled</td>
<td></td>
</tr>
<tr>
<td>Other ports are not supported.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Accessing a switch

To access switch A1 or A2:

1. Log on to the CMC, go to I/O Module Overview, and click the Launch IOM GUI button for switch A1 or switch A2.
 If the button isn’t available, it’s because an IP address has not been configured. See Assigning switch I/O modules an IP address, page 5.
2. A logon window displays. Log on. The Dell default credentials are: Username ‘root’, password ‘calvin’. Change these to comply with your organization’s security policies.
 The switch home screen shows the status of all ports on the switch. A green port is up (enabled), a blue port is down (disabled).
3. Click on a port to go to its configuration page.

Assigning switch I/O modules an IP address

Switches A1 and A2 are accessed through the Chassis Management Controller (CMC). Before they can be accessed, each must be assigned an IP address. To assign an IP address:
1. Log on to the CMC and go to Chassis Overview > I/O Module Overview > A1 Gigabit Ethernet (or A2).

2. Click the Setup tab.

3. For each of A1 and A2, uncheck DHCP Enabled, and enter an IP address, subnet mask, and gateway. The IP addresses must be unique.

4. Establish a User Name and Password that meets your organization’s security standards. The factory default credentials are:
 User Name = root Password = calvin
5. Click **Apply**. It takes a minute or 2 for the settings to be applied.

IMPORTANT: The GUI may initially indicate that the settings reverted to the previous values. Wait 2 or 3 minutes for the configuration action to complete and then refresh the page.

To access a switch, go to **Chassis Overview > I/O Module Overview** and click the **Launch IOM GUI** button corresponding to the switch you want to access.

Enabling and disabling ports

Enabling and disabling ports should not be necessary if you plan to use the provided switch configuration tool to configure the switches.

To enable or disable a port:

1. Log on to the CMC, go to **I/O Module Overview**, and click the **Launch IOM GUI** button for switch A1 or A2.
 If the button isn’t available, it’s because an IP address has not been configured. See the preceding section.

2. A logon window displays. Log on.
The home screen shows the status of all ports on the switch. A green port is up (enabled), a blue port is down (disabled).

3. To enable or disable a port, click on the green or blue area of the port. This opens the Port Configuration: Detail page.

 a. Confirm that the Port selection is correct. Change to another port if desired.
 b. Add a description if desired.
 c. Select Enable or Disable from the Admin Status drop down. This determines if the port is enabled or disabled.
 d. Examine and adjust other settings as needed and click Apply.

 IMPORTANT: The UI may initially indicate that the settings reverted to the previous values. Wait 2 or 3 minutes for the configuration action to complete and then refresh the page.
Configuring VLAN and switch high availability

Configuring for VLAN and switch HA requires:

- One or two external upstream switches with 10Gb trunk ports configured
- *VLAN Enabled: Cabling the switches*, page 9 (next section)
- Configuration of A1 and A2 with the *X10G switch configuration tool*, page 17
- *Configure VLAN support on the blades*, page 10
- *Deployment and test steps to avoid a network loop*, page 11

VLAN Enabled: Cabling the switches

Chassis switch cabling

The primary port is A1 Te1/2/2 (the lower 10Gb port; P1).

The secondary port, for optional switch high availability, is A2 Te1/2/2 (P2).

With 10Gb ports use SFP+ cables.
When VLAN is enabled, after running the X10G switch configuration tool, P1 and P2 are configured as trunk ports.

Important

In the X10G switch configuration tool, when prompted for the external port, select the option for `Te1/2/2`.

When cabling is complete, configure the switch with the *X10G switch configuration tool*, page 17.

Upstream switch configuration

Cable appropriately to the upstream switch.

Upstream 10Gb ports should be in **trunk** mode.

Enable spanning tree on the ports. The mode can be STP, RSTP, MSTP, or PVST.

Designate at least one root bridge with a priority number lower than the X10G switches.

- Pre-8.0: the default setting is 32768 on both M6220 switches and the blades
- 8.0 and higher: the default setting is 57344 on the switches and 61440 on the blades.

Configure VLAN support on the blades

After configuring the switch to recognize VLAN traffic and direct it appropriately, configure VLAN support on each blade.

Important

Once you have assigned a VLAN to any appliance interface, returning the appliance to a VLAN-unaware (no VLAN) state requires reimaging the blade.

You can, however, reassign the VLAN ID with the `set interface vlan` command, described below.

With new installations, you are offered the option to assign a default VLAN to interface P1 as part of the **firstboot** script.

For upgrades from VLAN-unaware configurations, or to add VLAN support after installation, use the appliance CLI as follows:

1. Connect to the blade that you want to configure, and log on as **admin**.
2. Enter **config** mode and enter the admin password when prompted.
3. Use the **set interface vlan** command to assign a VLAN ID to the first interface. For example:
set interface vlan --interface p1 --vid 400

4. Use the `set interface vlan` command to assign a VLAN ID to the second interface. For example:

 set interface vlan --interface p2 --vid 1025

5. When you are finished, use the `show interface` command to review the updated configuration.

Deployment and test steps to avoid a network loop

When deploying the X10G in a VLAN with high availability, to avoid introducing a network loop, configure the devices and test the configuration in careful steps. Include a network engineer in the configuration and testing of the switches.

Before making any changes, ensure that you have accurate documentation of the current network configuration, as well as the planned, finished configuration.

You should know:

1. The active and planned STP protocols.
2. The active and planned STP priority of each switch.

Supported STP protocols include:

- RSTP - The default protocol on the X10G Dell M6220 switches.
- MSTP - Document the STP priority on each VLAN, including the STP management VLAN. Know the STP priority of each VLAN allowed through the trunk interface.
- PVST* - Document the STP priority on each VLAN, including the STP management VLAN, typically VLAN 1. *If you plan to deploy PVST, it is recommended that you contact Technical Support to review planning and configuration steps.

Recommended configuration and deployment steps.

1. Ensure that the external switch has a higher STP priority setting than the X10G switches (lower than the Dell M6220 default setting).
 - Pre-8.0: the default setting is 32768 on both M6220 switches and the blades
 - 8.0 and higher: the default setting is 57344 on the switches and 61440 on the blades.
2. Ensure that all X10G blade switch interfaces are configured with STP enabled and have root guard enabled. Switch interfaces Gi1/0/1-16 should have a configuration similar to:

```plaintext
Interface Gi1/0/1
  spanning-tree guard root
  switchport mode trunk
  switchport trunk allowed vlan 869
  exit
```
3. Until STP and networking are confirmed working, shut down all but one of the blade interfaces. This limits the amount of network loop traffic generated if something goes wrong.

4. Connect only one 10Gb interface at a time to the external switch. Make sure that the other M6220 10Gb interface is either physically disconnected or in an admin shutdown state. This prevents the possibility of a network loop while STP testing is performed.

5. Configure the 10Gb trunk interface on both the external switch and the M6220 switch, and bring them up.

 If all VLANs are not being allowed in the configuration, it is recommended to manually add VLAN 1 to the allowed VLANs on the trunk on the external port. VLAN 1 is typically the management non-tagged VLAN that carries STP BPDU traffic between the switches. The M6220 automatically detects that VLAN 1 has been added.

6. When the trunk is up, test that STP is working correctly.
 a. Log on to the M6220 and run:

      ```
      show spanning-tree detail
      ```
 If spanning tree is working correctly:
 - The external switch root’s MAC address is listed in the ROOT ID Address
 - One of the 10Gb interfaces is listed as the Root Port.

 b. Check to see if BPDU packets are being sent and received on the uplink port to the external switch. To do this, after running the “show spanning-tree detail” command, scroll down to the Ten Gig Ethernet interfaces such as Te1/2/1 or Te1/2/2. In the screen capture you can see that BPDU packets are being sent and received. The interface is also designated as the “root” and is in a “forwarding” state.

 c. Use “ping” and “ssh” (if enabled on the blade) to test connectivity to the enabled blade.
If after running “show spanning-tree detail” you see the message “This Switch is the Root”, there is a configuration problem. Do not proceed to the next step until you can get the trunk and STP up and confirmed talking with BPDU packets.

7. After the first switch is configured and confirmed to be using STP correctly, shut down that 10Gb interface and bring up the other switch’s 10Gb interface. Follow the same steps as above until networking and STP function are confirmed working.

8. Confirm that STP functionality is working all the way through to the blade’s Open Vswitch (OVS). To do this safely, with one of the switches up, connect with “ping” to the blade. Then shut down the switch port that is up and bring up the other switch port.

 Note
 The OVS is running the standard STP protocol (not RSTP) so STP convergence is going to take 30-50 seconds before you can expect to see pings returning again from the blade.

If this test is successful, you know that STP is working all the way through to the blade.

9. It is now safe to enable both Dell 6220 switch uplink ports to the switches. Start with only one blade interface enabled.

10. Monitor CPU traffic on the switches. If there are any heavy spikes, immediately shut down one of the uplink interfaces.

Setting the STP priority on an X10G blade

Blades running v8.1.0 and higher

1. Log on to the blade’s CLI and enter config mode.
2. Use show vswitch to see the current STP priority setting.
3. Use set vswitch <priority_value> to set the STP priority value. Specify an integer in the range 4096-61440.

Blades running v8.0.x and lower

With the assistance of Technical Support, acquire access to the blade’s base operating system.

Edit the network bridge interface network script:
/etc/sysconfig/network-scripts/ifcfg-ovsbr0

The STP priority value is specified in hexadecimal.
In version 7.8.4 the default STP priority value is 32768 (0x8000).

In version 8.0.0 the default value is 61440 (0xF000), which is the lowest allowable STP priority.

Some examples of valid STP priorities that are lower than 32768 include:

- $0xA000 = 40960$
- $0xE000 = 57344$
- $0xF000 = 61440$

The value to change is in bold face in the configuration file example below.

```bash
# cat /etc/sysconfig/network-scripts/ifcfg-ovsbr0
HOTPLUG=no
BOOTPROTO=none
DEVICETYPE=ovs
DEVICE=ovsbr0
OVS_EXTRA="set Bridge $DEVICE stp_enable=true -- set Bridge $DEVICE other_config:stp-priority=0xA000"
TYPE=OVSBridge
ONBOOT=yes
```

How OVS works within the blade

![Diagram of OVS working within a blade](image)
Configuring No VLAN

Configuring for No VLAN support requires:

- An external upstream switch with 10Gb ports in access mode
- *No VLAN: Cabling the switches*, page 15
- Configuring A1 and A2 with the *X10G switch configuration tool*, page 17
- Optional – *Configuring link aggregation*, page 15

No VLAN: Cabling the switches

Port Assignments

- The primary port can be A1 Te1/2/1 or A1 Te1/2/2. Both ports are P1.
 - If configuring for link aggregation (optional), cable both ports.
 - P1 is used for all traffic unless a secondary (P2) port is configured.
- Optionally, A2 Te1/2/1 or Te1/2/2 can be used for egress traffic. Both ports are P2.
 - If configuring for link aggregation (optional), cable both ports.

With 10Gb ports use SFP+ cables.

When cabling is complete, configure the switch with the *X10G switch configuration tool*, page 17.

Configuring link aggregation

In link aggregation, both ports are active and share the load. If one port fails, the remaining port assumes all of the load.

Requirement: The upstream connections must be on the same switch or to switches in the same stack.

To configure link aggregation on the A1 or A2 switch:

1. Ensure that both Te1/2/1 and Te1/2/2 are enabled.
2. Perform these commands in console mode:

 interface Te1/2/1
 duplex full
 channel-group 1 mode active
 switchport access vlan 1
 exit

 interface Te1/2/2
 duplex full
 channel-group 1 mode active
 switchport access vlan 1
 exit

 interface port-channel 1
 switchport access vlan 1
 exit

3. On the upstream switch:
 a. Enable the 10 gigabit ports.
 b. Configure link aggregation. See your switch documentation.
 c. Configure each according to your VLAN allocation:

 switchport access vlan <n>

Some older switches require that the VLAN info be configured on both the physical ports and the link-aggregation port.
Some newer switches require VLAN configuration on the link-aggregation port only.
Refer to your switch documentation.

Important

“switchport access vlan 1” is the default configuration in Dell M6220 switches. It does **not** appear in the startup or running configuration scripts.
The switch configuration tool allows you to rapidly and accurately configure the X10G switches to support either:

- VLAN with switch high availability
- No VLAN (VLAN-unaware); no support for high availability

Before you begin, download the switch configuration tool to a Windows machine in your network. The Windows machine must be able to connect to the appliance CMC via a web browser. To download the switch tool:

1. Open a browser and go to My Account.
2. Log in when prompted, then select the Downloads tab.
3. Select X10G Base Configuration from the Product drop-down list, then select 8.2.x from the Version list.
4. Click the download link for the Switch Configuration Tool.
5. When the download is complete, extract the archive to a temporary directory.

Using the tool requires:

- The CMC IP address
- The CMC root password
- If set on either of the switches, the Enable password (not set, by default)

To configure the switch:

1. Use the CMC manager to verify that SSH connections are enabled on the Chassis Overview > Network > Services page under SSH Configuration.
2. Navigate to the Windows folder containing the switch configuration tool, and double-click switch-tool.exe to launch the tool.
3. When prompted, enter the CMC IP address.
4. Enter root as the CMC user name, followed by the root password.
5. If an Enable password has been set (not set, by default), enter the Enable password for switch A1, followed by the Enable password for switch A2.
The switch tool displays the current running configuration for switch A1, followed by the configuration for switch A2. For example:

<table>
<thead>
<tr>
<th>Port</th>
<th>Status</th>
<th>Mode</th>
<th>VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1/0/1</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/2</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/3</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/4</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/5</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/6</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/7</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/8</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/9</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/10</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/11</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/12</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/13</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/14</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/15</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/16</td>
<td>access</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/17</td>
<td>shutdown</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/18</td>
<td>shutdown</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/19</td>
<td>shutdown</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>G1/0/20</td>
<td>shutting</td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>Te1/2/1</td>
<td></td>
<td>access</td>
<td>1</td>
</tr>
<tr>
<td>Te1/2/2</td>
<td></td>
<td>access</td>
<td>1</td>
</tr>
</tbody>
</table>

STP status: off
STP protocol:
Bridge ID: 92760:0b067.2570.97b2

6. Select the X10G external port that is connected to your third-party upstream switch. Use option 6 (Te1/2/2) for VLAN enabled. Use 5 or 6 for no VLAN.

7. When prompted to select a deployment option, enter option 1 to enable VLAN support and switch high availability, or option 2 to leave the switch in No VLAN (not VLAN-aware) mode.

8. If you selected option 1:
 a. Enter the STP priority value for the switches. The recommended value is 57344 (and 61440 on the blades). The STP priority value you set on the upstream switch must be lower (with the effect of making it the root).
 b. You are prompted to configure VLAN settings for one or more blades.
 To start, enter the blade number or numbers in a comma-separated list (1,2,3), range format (1-3), or a combination (1,2,5-8).
All of the selected blades will receive traffic for the same VLAN or VLANs.

After configuring the first blade or set of blades, you will be given the option to configure additional sets of VLAN settings for your remaining blades.

c. Enter the **VLAN ID** or IDs to configure the traffic that will be directed to the selected blades. VLAN IDs can be entered in a comma-separated list (100,101,102), range format (100-102), or a combination.

 Each blade supports a maximum of 3 VLANs.

d. If you have additional blades to configure, enter **yes**, and repeat steps a and b. When you are finished, enter **no** to continue with the next step.

e. Specify whether to perform a full factory reset before reconfiguring each switch, then review the configuration settings displayed. There is no need to perform a factory reset unless you know there is a problem with the switch configuration.

9. If the new settings look correct, enter **1** to start the switch reconfiguration process.

 Progress information is displayed as first switch A1, then switch A2, is configured.

 The switch reconfiguration process should take only a few minutes.

10. When the switch reconfiguration is complete, press any key to exit the switch configuration tool.

If you have configured for VLAN support, ensure that your upstream switch is configured to send VLAN traffic to the X10G, and then configure individual blades to recognize VLAN traffic. See *Configure VLAN support on the blades*, page 10, for instructions.

Installing a new switch

If you must replace a switch:

1. Contact Forcepoint Technical Support for assistance.

2. When replacing the switch make certain that it is fully seated in the chassis, and that the switch lever is latched.

3. During the replacement procedure, ask the Technical Support specialist to demonstrate that the new switch is functioning properly, per your switch configuration requirements.